Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.168
Filter
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823930

ABSTRACT

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Subject(s)
Amorphophallus , Mannans , Mannans/chemistry , Mannans/isolation & purification , Humans , Amorphophallus/chemistry , Animals , Dietary Fiber/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Dietary Supplements , Prebiotics , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
2.
Sci Rep ; 14(1): 12475, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816444

ABSTRACT

Sirtuin 3 (SIRT3) belongs to the Sirtuin protein family, which consists of NAD+-dependent lysine deacylase, involved in the regulation of various cellular activities. Dysregulation of SIRT3 activity has been linked to several types of cancer, including breast cancer. Because of its ability to stimulate adaptive metabolic pathways, it can aid in the survival and proliferation of breast cancer cells. Finding new chemical compounds targeted towards SIRT3 was the primary goal of the current investigation. Virtual screening of ~ 800 compounds using molecular docking techniques yielded 8 active hits with favorable binding affinities and poses. Docking studies verified that the final eight compounds formed stable contacts with the catalytic domain of SIRT3. Those compounds have good pharmacokinetic/dynamic properties and gastrointestinal absorption. Based on excellent pharmacokinetic and pharmacodynamic properties, two compounds (MI-44 and MI-217) were subjected to MD simulation. Upon drug interaction, molecular dynamics simulations demonstrate mild alterations in the structure of proteins and stability. Binding free energy calculations revealed that compounds MI-44 (- 45.61 ± 0.064 kcal/mol) and MI-217 (- 41.65 ± 0.089 kcal/mol) showed the maximum energy, suggesting an intense preference for the SIRT3 catalytic site for attachment. The in-vitro MTT assay on breast cancer cell line (MDA-MB-231) and an apoptotic assay for these potential compounds (MI-44/MI-217) was also performed, with flow cytometry to determine the compound's ability to cause apoptosis in breast cancer cells. The percentage of apoptotic cells (including early and late apoptotic cells) increased from 1.94% in control to 79.37% for MI-44 and 85.37% for MI-217 at 15 µM. Apoptotic cell death was effectively induced by these two compounds in a flow cytometry assay indicating them as a good inhibitor of human SIRT3. Based on our findings, MI-44 and MI-217 merit additional investigation as possible breast cancer therapeutics.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Sirtuin 3 , Sirtuin 3/metabolism , Sirtuin 3/antagonists & inhibitors , Sirtuin 3/chemistry , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Cell Proliferation/drug effects , Protein Binding
3.
Eur J Med Chem ; 272: 116495, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38744089

ABSTRACT

Angiogenesis inhibitors and photosensitizers are pivotal in tumor clinical treatment, yet their utilization is constrained. Herein, eleven novel angiogenesis inhibitors were developed through hybridization strategy to overcome their clinical limitations. These title compounds boast excitation wavelengths within the "therapeutic window", enabling deep tissue penetration. Notably, they could generate superoxide anion radicals via the Type I mechanism, with compound 36 showed the strongest superoxide anion radical generating capacity. Biological evaluation demonstrated remarkable cellular activity of all the title compounds, even under hypoxic conditions. Among them, compound 36 stood out for its superior anti-proliferative activity in both normoxic and hypoxic environments, surpassing individual angiogenesis inhibitors and photosensitizers. Compound 36 induced cell apoptosis via superoxide anion radical generation, devoid of dark toxicity. Molecular docking revealed that the target-recognizing portion of compound 36 was able to insert into the ATP binding pocket of the target protein similar to sorafenib. Collectively, our results suggested that hybridization of angiogenesis inhibitors and photosensitizers was a potential strategy to address the limitations of their clinical use.


Subject(s)
Angiogenesis Inhibitors , Cell Proliferation , Molecular Docking Simulation , Photosensitizing Agents , Superoxides , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Humans , Superoxides/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects
4.
Eur J Med Chem ; 272: 116494, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38749268

ABSTRACT

Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.


Subject(s)
Antineoplastic Agents , Jumonji Domain-Containing Histone Demethylases , Prostatic Neoplasms , Humans , Male , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Up-Regulation/drug effects , Cell Proliferation/drug effects , Molecular Structure , Drug Discovery , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Screening Assays, Antitumor , Proteolysis/drug effects , Interferons/metabolism , Nuclear Proteins , Repressor Proteins
5.
J Colloid Interface Sci ; 670: 73-85, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759270

ABSTRACT

HYPOTHESIS: Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. EXPERIMENTS: Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple-negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. FINDINGS: Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.


Subject(s)
Hyperthermia, Induced , Magnetic Iron Oxide Nanoparticles , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Line, Tumor , Particle Size , Drug Screening Assays, Antitumor , Combined Modality Therapy , Surface Properties , Cell Proliferation/drug effects
6.
Int J Med Mushrooms ; 26(5): 73-86, 2024.
Article in English | MEDLINE | ID: mdl-38780424

ABSTRACT

Polyporoid fungi represent a vast source of bioactive compounds with potential pharmacological applications. The importance of polyporoid fungi in traditional Chinese medicine has led to an extensive use of some species of Ganoderma for promoting health and longevity because their consumption is associated with several bioactivities. Nevertheless, bioactivity of some other members of the Polyporaceae family has also been reported. This work reports the antiproliferative and antibacterial activity of crude extracts obtained from fruiting bodies of polypore fungi collected from the central region of Veracruz, Mexico, aimed at understanding the diversity of polypore species with potential pharmacological applications. 29 collections were identified macro- and microscopically in 19 species of polyporoid fungi, belonging to 13 genera. The antiproliferative activity screening of extracts against solid tumor cell lines (A549, SW1573, HeLa, HBL-100, T-47D, WiDr) allow us to identify four extracts with strong bioactivity [half-maximal growth inhibition (GI50) ≤ 50 µg/mL]. After this, a phylogenetic analysis of DNA sequences from the ITS region obtained from bioactive specimens allowed us to identify three extracts as Pycnoporus sanguineus (GI50 = ≤ 10 µg/mL) and the fourth bioactive extract as Ganoderma oerstedii (GI50 = < 50 µg/mL. Likewise, extracts from P. sanguineus showed mild or moderate antibacterial activity against Escherichia coli, Staphylococcus aureus and Xanthomonas albilineas. Bioprospecting studies of polyporoid fungi add to the knowledge of the diversity of macrofungi in Mexico and allow us to select one of the bioactive P. sanguineus to continue the pursuit of bioactive compounds through mycochemical studies.


Subject(s)
Anti-Bacterial Agents , Phylogeny , Mexico , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyporaceae/chemistry , Polyporaceae/classification , Fruiting Bodies, Fungal/chemistry , Microbial Sensitivity Tests
7.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Article in English | MEDLINE | ID: mdl-38725079

ABSTRACT

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Subject(s)
Apoptosis , Cisplatin , DNA Damage , DNA Repair , Glycyrrhizic Acid , Melanoma , Cisplatin/pharmacology , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Drug Synergism , Proto-Oncogene Proteins c-bcl-2/metabolism
8.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Article in English | MEDLINE | ID: mdl-38726747

ABSTRACT

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Subject(s)
Biological Products , Type C Phospholipases , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Type C Phospholipases/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Humans , Allyl Compounds , Phenols
9.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Article in English | MEDLINE | ID: mdl-38726798

ABSTRACT

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Subject(s)
Apoptosis , Breast Neoplasms , Hypoxia-Inducible Factor-Proline Dioxygenases , Humans , Female , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Apoptosis/drug effects , Mice , Cell Hypoxia/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , NF-kappa B/metabolism , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/metabolism
10.
Med Oncol ; 41(6): 145, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727885

ABSTRACT

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Neoplasms , Polyelectrolytes , Humans , Polyelectrolytes/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Precision Medicine/methods
11.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article in English | MEDLINE | ID: mdl-38708182

ABSTRACT

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Subject(s)
Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
12.
Int J Nanomedicine ; 19: 3919-3942, 2024.
Article in English | MEDLINE | ID: mdl-38708176

ABSTRACT

Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.


Subject(s)
Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Nanomedicine/methods , Animals , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
13.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Article in English | MEDLINE | ID: mdl-38708177

ABSTRACT

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Telomerase , Telomere , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Telomere/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Telomerase/antagonists & inhibitors , Animals , Drug Delivery Systems/methods , Nanoparticles/chemistry , Immunotherapy/methods , Neoplastic Stem Cells/drug effects
14.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
15.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710894

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
16.
J Mol Model ; 30(6): 177, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775913

ABSTRACT

CONTEXT: Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS: Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).


Subject(s)
Antineoplastic Agents , Density Functional Theory , Magnetic Resonance Spectroscopy , Thiocarbamates , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thiocarbamates/chemistry , Magnetic Resonance Spectroscopy/methods , Bismuth/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Models, Molecular , Humans
17.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731421

ABSTRACT

The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.


Subject(s)
Chemistry, Pharmaceutical , Piperidines , Piperidines/chemistry , Chemistry, Pharmaceutical/methods , Humans , Drug Design , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
18.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731434

ABSTRACT

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Subject(s)
Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
19.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731467

ABSTRACT

Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs by macroporous resins were first obtained. The loading concentration, flow rate, and loading volume of raw flavonoid extracts were 1.4 mg/mL, 2.4 BV/h, and 5 BV, respectively, and for desorption, 60% ethanol (4 BV) was selected to elute JMFs-loaded AB-8 resin at a flow rate of 2.4 BV/h. This adsorption behavior can be explained by the pseudo-second-order kinetic model and Langmuir isotherm model. Subsequently, JMFs were identified using Fourier transform infrared combined with high-performance liquid chromatography and tandem mass spectrometry, and a total of 156 flavonoids were identified. Furthermore, the inhibitory potential of JMFs on the proliferation, migration, and invasion of HepG2 cells was demonstrated. The results also show that exposure to JMFs induced apoptotic cell death, which might be associated with extrinsic and intrinsic pathways. Additionally, flow cytometry detection found that JMFs exposure triggered S phase arrest and the generation of reactive oxygen species in HepG2 cells. These findings suggest that the JMFs purified in this study represent great potential for the treatment of liver cancer.


Subject(s)
Apoptosis , Cell Proliferation , Flavonoids , Juglans , Juglans/chemistry , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Cell Proliferation/drug effects , Hep G2 Cells , Apoptosis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Movement/drug effects , Chromatography, High Pressure Liquid , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
20.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731510

ABSTRACT

The scientific article focuses on the role of azulene and its derivatives in the therapy of dermatological diseases, presenting the latest laboratory and clinical research as well as prospects for further studies. In a synthetic literature review, various databases such as PubMed, Scopus, Web of Science, and the Database of Polish Scientific Journals were queried to select relevant articles concerning azulene. The conclusions drawn from the thematic analysis of the studies emphasize the multifaceted pharmacological actions of azulene and its derivatives including their anti-inflammatory properties, potential anticancer effects, photoprotective abilities, alleviation of itching, management of atopic dermatitis, and treatment of erectile dysfunction. However, there are certain limitations associated with the application of unmodified azulene on the skin, particularly related to photodecomposition and the generation of reactive oxygen species under UV radiation. These effects, in turn, necessitate further research on the safety of azulene and azulene-derived substances, especially regarding their long-term use and potential application in phototherapy. The authors of this work emphasize the necessity of conducting further preclinical and clinical studies to fully understand the mechanisms of action. Incorporating azulene and its derivatives into the therapy of dermatological disorders may represent an innovative approach, thereby opening new treatment avenues for patients.


Subject(s)
Antineoplastic Agents , Azulenes , Skin Diseases , Azulenes/chemistry , Azulenes/therapeutic use , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Skin Diseases/drug therapy , Neoplasms/drug therapy , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...