Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.297
Filter
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823930

ABSTRACT

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Subject(s)
Amorphophallus , Mannans , Mannans/chemistry , Mannans/isolation & purification , Humans , Amorphophallus/chemistry , Animals , Dietary Fiber/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Dietary Supplements , Prebiotics , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
2.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Article in English | MEDLINE | ID: mdl-38726747

ABSTRACT

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Subject(s)
Biological Products , Type C Phospholipases , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Type C Phospholipases/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Humans , Allyl Compounds , Phenols
3.
J Oleo Sci ; 73(5): 743-749, 2024.
Article in English | MEDLINE | ID: mdl-38692896

ABSTRACT

Conjugated fatty acids have anticancer effects. Therefore, the establishment of a synthetic method for conjugated fatty acids is important for overcoming cancer. Here, we attempted to synthesize conjugated fatty acids using enzymes extracted from seaweeds containing these fatty acids. Lipids from 12 species of seaweeds from the seas around Japan were analyzed, and Padina arborescens Holmes was found to contain conjugated fatty acids. Then, we synthesized parinaric acid, a conjugated tetraenoic acid, from α-linolenic acid using the enzyme of P. arborescens. This method is expected to have a variety of potential applications for overcoming cancer.


Subject(s)
alpha-Linolenic Acid , alpha-Linolenic Acid/chemistry , Seaweed/chemistry , Fatty Acids, Unsaturated/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
4.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731537

ABSTRACT

The fungal genus Trichoderma is a rich source of structurally diverse secondary metabolites with remarkable pharmaceutical properties. The chemical constituents and anticancer activities of the marine-derived fungus Trichoderma lixii have never been investigated. In this study, a bioactivity-guided investigation led to the isolation of eleven compounds, including trichodermamide A (1), trichodermamide B (2), aspergillazine A (3), DC1149B (4), ergosterol peroxide (5), cerebrosides D/C (6/7), 5-hydroxy-2,3-dimethyl-7-methoxychromone (8), nafuredin A (9), and harzianumols E/F (10/11). Their structures were identified by using various spectroscopic techniques and compared to those in the literature. Notably, compounds 2 and 5-11 were reported for the first time from this species. Evaluation of the anticancer activities of all isolated compounds was carried out. Compounds 2, 4, and 9 were the most active antiproliferative compounds against three cancer cell lines (human myeloma KMS-11, colorectal HT-29, and pancreas PANC-1). Intriguingly, compound 4 exhibited anti-austerity activity with an IC50 of 22.43 µM against PANC-1 cancer cells under glucose starvation conditions, while compound 2 did not.


Subject(s)
Antineoplastic Agents , Trichoderma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Humans , Trichoderma/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Aquatic Organisms/chemistry , Drug Screening Assays, Antitumor
5.
Mar Drugs ; 22(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786609

ABSTRACT

Two new cytochalasin derivatives, peniotrinins A (1) and B (2), three new citrinin derivatives, peniotrinins C-E (4, 5, 7), and one new tetramic acid derivative, peniotrinin F (12), along with nine structurally related known compounds, were isolated from the solid culture of Peniophora sp. SCSIO41203. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis, quantum chemical calculations, and the calculated ECD. Interestingly, 1 is the first example of a rare 6/5/5/5/6/13 hexacyclic cytochalasin. We screened the above compounds for their anti-prostate cancer activity and found that compound 3 had a significant anti-prostate cancer cell proliferation effect, while compounds 1 and 2 showed weak activity at 10 µM. We then confirmed that compound 3 exerts its anti-prostate cancer effect by inducing methuosis through transmission electron microscopy and cellular immunostaining, which suggested that compound 3 might be first reported as a potential anti-prostate methuosis inducer.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Male , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Proliferation/drug effects , Cytochalasins/pharmacology , Cytochalasins/chemistry , Cytochalasins/isolation & purification , Aquatic Organisms , Cell Line, Tumor , Molecular Structure
6.
Mar Drugs ; 22(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786610

ABSTRACT

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Subject(s)
Anthozoa , Antineoplastic Agents , Prostaglandins , Humans , Anthozoa/chemistry , Animals , Cell Line, Tumor , Prostaglandins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Nitric Oxide/metabolism , Inhibitory Concentration 50 , Aquatic Organisms , Molecular Structure
7.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786622

ABSTRACT

Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.


Subject(s)
Alkaloids , Porifera , Pyrroles , Animals , Porifera/chemistry , Humans , New Zealand , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/isolation & purification , HeLa Cells , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Sulfates/chemistry , Sulfates/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
8.
Sci Prog ; 107(2): 368504241253675, 2024.
Article in English | MEDLINE | ID: mdl-38807531

ABSTRACT

Camptothecin (CPT) is an important alkaloid used for anticancer treatment. It is mainly produced by two endangered and overharvested Camptotheca acuminata and Nothapodytes nimmoniana plants. Endophytic fungi are promising alternative sources for CPT production. In the present study, fungi residing within explants of Ixora chinensis were isolated and their CPT-producing capability of their endophytes was verified via thin-layer chromatography, high-performance liquid chromatography, liquid chromatography/high resolution mass spectrometry, and nuclear magnetic resonance analyses and compared with standards. In addition, MTT and sulforhodamine B assays were selected to test the anticancer effect. The endophytic fungi collection of 62 isolates were assigned to 11 genera, with four common genera (Diaporthe, Phyllosticta, Colletotrichum, and Phomopsis) and seven less common genera (Penicillium, Botryosphaeria, Fusarium, Pestalotiopsis, Aspergillus, and Didymella). Moreover, the anticancer activity of extracts was assessed against human lung carcinoma (A549). Among eight potential extracts, only Penicillium sp. I3R2 was found to be a source of CPT, while the remaining seven extracts have not been discovered potential secondary compounds. Thus, other prominent endophytic fungi might be potential candidates of phytochemicals with anticancer properties.


Subject(s)
Antineoplastic Agents , Camptothecin , Endophytes , Fungi , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/biosynthesis , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/chemistry , Fungi/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , A549 Cells , Cell Line, Tumor
9.
Phytochemistry ; 223: 114113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697241

ABSTRACT

Eleven undescribed cembrane-type diterpenoids, named litoamentenes A-K (1-11), were isolated from the soft coral Litophyton amentaceum collected from the South China Sea. Their structures were elucidated by extensive analysis of spectroscopic data, comparison with the literature data, single crystal X-ray diffraction, quantum chemical calculations and TDDFT-ECD calculations. This is the first systematic investigation of L. amentaceum. In particular, compounds 1-3 are cembrane-type norditerpenoids that lack isopropyl side chains. Compound 6 is a cembrane-type norditerpenoid without a methyl group at C-4, the first natural product identified with this carbon skeleton. Compounds 6, 9 and 10 showed modest cytotoxicity against several human cancer cell lines with IC50 values ranging from 3.99 to 14.56 µM.


Subject(s)
Anthozoa , Diterpenes , Drug Screening Assays, Antitumor , Anthozoa/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Animals , Humans , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , China , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Models, Molecular
10.
Phytochemistry ; 223: 114119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705266

ABSTRACT

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Subject(s)
Diketopiperazines , Talaromyces , Talaromyces/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Diketopiperazines/isolation & purification , Humans , Molecular Structure , Prenylation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Indole Alkaloids/isolation & purification , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Hep G2 Cells , Cell Proliferation/drug effects , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor
11.
Org Lett ; 26(19): 4127-4131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38718303

ABSTRACT

Hybrid genome-mining/15N-NMR was used to target compounds containing piperazate (Piz) residues, leading to the discovery of caveamides A (1) and B (2) from Streptomyces sp. strain BE230, isolated from New Rankin Cave (Missouri). Caveamides are highly dynamic molecules containing an unprecedented ß-ketoamide polyketide fragment, two Piz residues, and a new N-methyl-cyclohexenylalanine residue. Caveamide B (2) exhibited nanomolar cytotoxicity against several cancer cell lines and nanomolar antimicrobial activity against MRSA and E. coli.


Subject(s)
Escherichia coli , Methicillin-Resistant Staphylococcus aureus , Streptomyces , Humans , Molecular Structure , Streptomyces/chemistry , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Alanine/chemistry , Alanine/pharmacology , Alanine/analogs & derivatives , Drug Screening Assays, Antitumor , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Cell Line, Tumor , Pyridazines
12.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710561

ABSTRACT

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Subject(s)
Antioxidants , Glucans , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Agaricales/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Molecular Weight , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Basidiomycota/chemistry , Cell Survival/drug effects
13.
J Nat Prod ; 87(4): 984-993, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587271

ABSTRACT

A chemical investigation of the hydrophilic fraction of a cultured Nodularia sp. (NIES-3585) afforded six new cyclic lipopeptides, noducyclamides A1-A4 (1-4) containing 10 amino acid residues and dodecapeptides noducyclamides B1 and B2 (5 and 6). The planar structures of these lipopeptides were elucidated based on the combination of HRMS and 1D and 2D NMR spectroscopic data analyses. These peptides are structurally analogous to laxaphycins and contain the nonproteinogenic amino acids 3-hydroxyvaline and 3-hydroxyleucine and a ß-amino decanoic acid residue. The absolute configurations of the noducyclamides (1-6) were determined by acid hydrolysis, followed by advanced Marfey's analysis. Noducyclamide B1 (5) showed cytotoxic activities against MCF7 breast cancer cell lines with an IC50 value of 3.0 µg/mL (2.2 µM).


Subject(s)
Cyanobacteria , Peptides, Cyclic , Humans , Molecular Structure , Cyanobacteria/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemistry , Drug Screening Assays, Antitumor , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Female , Nuclear Magnetic Resonance, Biomolecular
14.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
15.
Phytochemistry ; 222: 114073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565420

ABSTRACT

Two undescribed cladosporol derivatives, cladosporols J-K (1-2), and three previously unreported spirobisnaphthalenes, urnucratins D-F (3-5), as well as eleven known cladosporols (6-16), were characterized from Cladosporium cladosporioides (Cladosporiaceae), a common plant pathogen isolated from the skin of Chinese toad. Cladosporols J-K (1-2) with a single double bond have been rarely reported, while urnucratins D-F (3-5) featured an unusual benzoquinone bisnaphthospiroether skeleton, contributing to an expanding category of undiscovered natural products. Their structures and absolute configurations were determined using extensive spectroscopic methods, including NMR, HRESIMS analyses, X-ray single crystal diffraction, as well as through experimental ECD analyses. Biological assays revealed that compounds 1 and 2 exhibited inhibitory activity against A549 cells, with IC50 values of 30.11 ± 3.29 and 34.32 ± 2.66 µM, respectively.


Subject(s)
Cladosporium , Naphthalenes , Cladosporium/chemistry , Humans , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Molecular Structure , Drug Screening Assays, Antitumor , A549 Cells , Spiro Compounds/chemistry , Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Dose-Response Relationship, Drug , Cell Proliferation/drug effects
16.
Phytochemistry ; 222: 114078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574958

ABSTRACT

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Subject(s)
Alternaria , Ascomycota , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Humans , Ascomycota/chemistry , Chlorocebus aethiops , Alternaria/chemistry , Vero Cells , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Animals , Molecular Structure , Drug Screening Assays, Antitumor , Colletotrichum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Structure-Activity Relationship , MCF-7 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Dose-Response Relationship, Drug
17.
Phytochemistry ; 222: 114074, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604324

ABSTRACT

Ustiloxins I-M (1-5), five undescribed cyclopeptides bearing a 15-membered macrocyclic skeleton, were isolated from Cordyceps militaris. The structures of 1 and 5 were identified by spectroscopic and crystallographic methods, whereas the structures of 2-4 were assigned by spectroscopic and computational approaches. Biological evaluation of all the compounds toward human triple-negative breast cancer cells revealed that compounds 4 and 5 are toxic with IC50 values of 64.29 µM and 28.89 µM, respectively.


Subject(s)
Cordyceps , Peptides, Cyclic , Cordyceps/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Humans , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Structure-Activity Relationship , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
18.
Phytochemistry ; 222: 114101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636687

ABSTRACT

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Subject(s)
Polyketides , Streptomyces , Streptomyces/chemistry , Streptomyces/metabolism , Streptomyces/genetics , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Humans , Stereoisomerism , Drug Screening Assays, Antitumor , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/isolation & purification , Macrolides/metabolism , Cell Proliferation/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Structure-Activity Relationship , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Cell Line, Tumor , Genome, Bacterial , Multigene Family
19.
Phytochemistry ; 222: 114110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663824

ABSTRACT

Molecular networking strategy-based prioritization of the isolation of the rarely studied soft coral Sinularia tumulosa yielded 14 sesquiterpenes. These isolated constituents consisted of nine different types of carbon frameworks, namely asteriscane, humulane, capillosane, seco-asteriscane, guaiane, dumortane, cadinane, farnesane, and benzofarnesane. Among them, situmulosaols A-C (1, 3 and 4) were previously undescribed ones, whose structures with absolute configurations were established by the combination of extensive spectral data analyses, quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory electronic circular dichroism calculations, the Snatzke's method, and the modified Mosher's method. Notably, situmulosaol C (4) was the second member of capillosane-type sesquiterpenes. The plausible biogenetic relationships of these skeletally different sesquiterpenes were proposed. All sesquiterpenoids were evaluated for their antibacterial, cytotoxic and anti-inflammatory effects. The bioassay results showed compound 14 exhibited significant antibacterial activities against a variety of fish and human pathogenic bacteria with MIC90 values ranging from 3.6 to 33.8 µg/mL. Moreover, moderate cytotoxic effects against HEL cells for components 13 and 14 and moderate inhibitory effect on lipopolysaccharide-induced inflammatory responses in RAW264.7 cells for substance 13 were also observed.


Subject(s)
Anthozoa , Sesquiterpenes , Anthozoa/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Animals , Mice , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , China , RAW 264.7 Cells , Microbial Sensitivity Tests , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Structure-Activity Relationship , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Density Functional Theory , Dose-Response Relationship, Drug
20.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Article in English | MEDLINE | ID: mdl-38569989

ABSTRACT

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Fungal Polysaccharides , Zebrafish , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/isolation & purification , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/isolation & purification , Humans , Coriolaceae/chemistry , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Mice , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...