Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.587
Filter
1.
Food Res Int ; 188: 114484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823870

ABSTRACT

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Subject(s)
Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
2.
Food Res Int ; 188: 114513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823886

ABSTRACT

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Subject(s)
Antioxidants , Digestion , Animals , Hydrolysis , Antioxidants/metabolism , Antioxidants/analysis , Bone and Bones/metabolism , Swine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Food Handling/methods , Hot Temperature , Amino Acids/metabolism , Amino Acids/analysis , Meat Products/analysis , Hypoglycemic Agents/pharmacology , Antihypertensive Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Endopeptidases
3.
J Oleo Sci ; 73(6): 865-874, 2024.
Article in English | MEDLINE | ID: mdl-38825540

ABSTRACT

Although peach kernels are rich in oil, there is a lack of information about its chemical and biological properties. Therefore, the purpose of this study was to determine the lipid profile, antioxidant capacity, and trypsin inhibitory propriety of peach oil extracted from two varieties (sweet cap and O'Henry) cultivated in Tunisia. The investigated peach kernel oil contains significant amount of unsaponifiable (2.1±0.5-2.8±0.2% of oil) and phenolic compounds (45.8±0.92-74.6±1.3 mg GAE/g of oil). Its n-alkane profile was characterized by the predominance of tetracosane n-C24 (47.24%) followed by tricosane n-C23 (34.43%). An important total tocopherol content (1192.83±3.1 mg/kg oil) has been found in sweet cap cultivar. Although rich in polyphenols and tocopherols, the tested oil did not display an inhibitory effect on trypsin. However, all peach oil samples showed effective antioxidant capacity and the highest values (86.34±1.3% and 603.50±2.6 µmol TE/g oil for DPPH test and ORAC assay, respectively) were observed for sweet cap oil. Peach oil has an excellent potential for application in the food and pharmaceutical industries as source of naturally-occurring bioactive substances.


Subject(s)
Antioxidants , Phenols , Plant Oils , Prunus persica , Tocopherols , Antioxidants/analysis , Plant Oils/chemistry , Plant Oils/analysis , Phenols/analysis , Tocopherols/analysis , Prunus persica/chemistry , Trypsin Inhibitors/analysis , Polyphenols/analysis
4.
ScientificWorldJournal ; 2024: 8128813, 2024.
Article in English | MEDLINE | ID: mdl-38827814

ABSTRACT

The genus Hypericum comprises a large number of species. The flower, leaf, stem, and root of the Hypericum species are widely used in traditional medicine in different cultures. Many Hypericum species have been well investigated phytochemically and pharmacologically. However, only a few reports are available on the H. cordifolium native to Nepal. The present study aims to evaluate the phytochemical composition of different extracts, qualitative analysis of methanol extract of the flower and leaf using thin-layer chromatography (TLC), and the antioxidant properties of components by the TLC-DPPH. assay. The phenolic and flavonoid contents were estimated in different extracts of the leaf and stem, and their antioxidant and antibacterial activities were evaluated. In the phytochemical screening, phenolics and flavonoids were present in ethyl acetate, methanol, and 50% aq methanol extracts of both the leaf and stem. In TLC analysis, the methanol extract of flowers showed the presence of 11 compounds and the leaf extract showed the presence of 8 compounds. Both extracts contained chlorogenic acid and mangiferin. Hyperoside and quercetin were present only in the flower extract. In the TLC-DPPH. assay, almost all of the flower extracts and 5 compounds of the leaf extract showed radical scavenging potential. Estimation of phenolics and flavonoids showed that all the leaf extracts showed higher amounts of phenolics and flavonoids than stem extracts. Among leaf extracts, greater amounts of phenolics were detected in 50% aqueous methanol extract (261.25 ± 1.66 GAE/g extract) and greater amounts of flavonoids were detected in methanol extract (232.60 ± 10.52 CE/g extract). Among stem extracts, greater amounts of flavonoids were detected in the methanol extract (155.12 ± 4.30 CE/g extract). In the DPPH radical scavenging assay, the methanol extract of the leaf showed IC50 60.85 ± 2.67 µg/ml and 50% aq. methanol extract of the leaf showed IC50 63.09 ± 2.98 µg/ml. The methanol extract of the stem showed IC50 89.39 ± 3.23 µg/ml, whereas ethyl acetate and 50% aq. methanol extract showed IC50 > 100 µg/ml. In the antibacterial assay, the methanol extract of the leaf showed the inhibition zone of 12-13 mm and the stem extract showed the inhibition zone of 7-11 mm against S. aureus, E. coli, and S. sonnei, whereas both extracts were inactive against S. typhi. The findings of this study support the traditional use of this plant in Nepal for the treatment of diseases associated with bacterial infections. The present study revealed that the underutilized anatomical parts of H. cordifolium could be the source of various bioactive phytochemicals like other Hypericum species.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Flavonoids , Hypericum , Phytochemicals , Plant Extracts , Hypericum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Plant Leaves/chemistry , Phenols/analysis , Phenols/chemistry , Microbial Sensitivity Tests , Chromatography, Thin Layer , Plant Stems/chemistry
5.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
6.
J Oleo Sci ; 73(5): 637-644, 2024.
Article in English | MEDLINE | ID: mdl-38692888

ABSTRACT

Epoxy fatty acid formation during heating was estimated using triolein (OOO) and trilinolein (LLL). Epoxy octadecanoic acids were found in heated OOO, while epoxy octadecenoic acids were found in heated LLL. The content of epoxy fatty acids increased with heating time, and trans-epoxy fatty acids were formed significantly more than cis-epoxy fatty acids. A comparison between OOO and LLL indicated that epoxy fatty acid formation was higher in the OOO than that in the LLL. Heating tests in the presence of α- tocopherol suggested that the formation of epoxy fatty acids could be suppressed by antioxidants.


Subject(s)
Antioxidants , Epoxy Compounds , Fatty Acids , Hot Temperature , Triglycerides , Fatty Acids/analysis , Antioxidants/analysis , Triglycerides/analysis , Triglycerides/chemistry , alpha-Tocopherol/analysis , Triolein/chemistry , Time Factors
7.
J Mass Spectrom ; 59(6): e5033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726726

ABSTRACT

A total of 43 compounds, including phenolic acids, flavonoids, lignans, and diterpene, were identified and characterized using UPLC-ESI-Q-TOF-MS coupled with UNIFI software. The identified flavonoids were mostly isomers of luteolin, apigenin, and quercetin, which were elucidated and distinguished for the first time in pepper cultivars. The use of multivariate data analytics for sample discrimination revealed that luteolin derivatives played the most important role in differentiating pepper cultivars. The content of phenolic acids and flavonoids in immature green peppers was generally higher than that of mature red peppers. The pepper extracts possessed significant antioxidant activities, and the antioxidant activities correlated well with phenolic contents and their molecular structure. In conclusion, the findings expand our understanding of the phytochemical components of the Chinese pepper genotype at two maturity stages. Moreover, a UPLC-ESI-Q-TOF-MS in negative ionization mode rapid methods for characterization and isomers differentiation was described.


Subject(s)
Antioxidants , Capsicum , Phenols , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Capsicum/chemistry , Isomerism , Phenols/chemistry , Phenols/analysis , Flavonoids/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , East Asian People
8.
Sci Rep ; 14(1): 10052, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698117

ABSTRACT

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Subject(s)
Antioxidants , Apiaceae , Daucus carota , Foeniculum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Apiaceae/chemistry , Daucus carota/chemistry , Foeniculum/chemistry , Cuminum/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Coriandrum/chemistry , Seeds/chemistry , Anethum graveolens/chemistry , Pimpinella/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Apium/chemistry
9.
PeerJ ; 12: e17250, 2024.
Article in English | MEDLINE | ID: mdl-38726376

ABSTRACT

Herbal infusions exhibit diverse pharmacological effects, such as antioxidant, anti-inflammatory, anticancer, antihypertensive, and antineurodegenerative activities, which can be attributed to the high content of phenolic compounds (e.g., caffeoylquinic acids (CQAs)). In this study, we used ultraperformance liquid chromatography to determine the content of CQAs in the methanolic extracts of model herbs, namely, yerba mate (Ilex paraguariensis), stevia (Stevia rebaudiana), and Indian camphorweed (Pluchea indica (L.) Less.). The results revealed that yerba mate had the highest total CQA content (108.05 ± 1.12 mg/g of dry weight). Furthermore, we evaluated the effect of brewing conditions and storage at 4 °C under dark and light conditions on the antioxidant property and total phenolic and CQA contents of a yerba mate infusion. The analysis of the yerba mate infusions prepared with different steeping times, dried leaf weights, and water temperatures revealed that the amount of extracted CQAs was maximized (∼175 mg/150 mL) when 6 g of dried leaves were steeped in hot water for 10 min. A total of 10-day refrigerated storage resulted in no significant changes in the antioxidant activity and total phenolic and CQA contents of an infusion kept in a brown container (dark). However, the antioxidant properties and total phenolic and CQA contents were negatively affected when kept in a clear container, suggesting the detrimental effect of light exposure. Our study provides practical recommendations for improving the preparation and storage of herbal infusions, thus catering to the needs of consumers, food scientists, and commercial producers. Moreover, it is the first study of the influence of light exposure on the content of crucial quality attributes within plant-based beverages.


Subject(s)
Antioxidants , Ilex paraguariensis , Plant Extracts , Quinic Acid , Stevia , Ilex paraguariensis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Stevia/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Phenols/analysis , Cold Temperature , Plant Leaves/chemistry , Drug Storage
10.
Food Res Int ; 186: 114379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729702

ABSTRACT

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Subject(s)
Altitude , Metabolomics , Tea , Volatile Organic Compounds , Tea/chemistry , Volatile Organic Compounds/analysis , Humans , Odorants/analysis , Taste , Antioxidants/analysis , Camellia sinensis/chemistry , Amino Acids/analysis , Flavonoids/analysis , Male , China , Female
11.
Food Res Int ; 186: 114356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729722

ABSTRACT

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Subject(s)
Crassostrea , Plasmalogens , Temperature , Animals , Plasmalogens/metabolism , Plasmalogens/analysis , Crassostrea/genetics , Crassostrea/metabolism , Shellfish/analysis , Proteomics/methods , Antioxidants/metabolism , Antioxidants/analysis , Alkaline Phosphatase/metabolism , Food Quality
12.
Food Res Int ; 186: 114363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729725

ABSTRACT

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Subject(s)
Antioxidants , Digestion , Food Handling , Gadus morhua , Nutritive Value , Seafood , Gadus morhua/metabolism , Animals , Seafood/analysis , Antioxidants/analysis , Antioxidants/chemistry , Food Handling/methods , Phenols/analysis , Ultrasonic Waves , Flavonoids/analysis , Nutrients/analysis , Taste , Color
13.
Food Res Int ; 186: 114376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729723

ABSTRACT

Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.


Subject(s)
Cooking , Digestion , Microwaves , Red Meat , Cooking/methods , Red Meat/analysis , Animals , Cattle , Antioxidants/analysis , Meat Products/analysis , Lipolysis , Diet, Vegan
14.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731535

ABSTRACT

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Subject(s)
Antioxidants , Fermentation , Fragaria , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Fragaria/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Odorants/analysis , Phenols/analysis , Flavonoids/analysis , Fruit/chemistry , Color
15.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731592

ABSTRACT

The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 µg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 µmol TE/g) and DPPH (9.01 µmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.


Subject(s)
Antioxidants , Dietary Supplements , Phenols , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Dietary Supplements/analysis , Flavonoids/analysis , Flavonoids/chemistry , Plant Proteins/analysis , Chromatography, High Pressure Liquid , Polyphenols/analysis , Polyphenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
Food Res Int ; 183: 114203, 2024 May.
Article in English | MEDLINE | ID: mdl-38760135

ABSTRACT

Beer is the third most consumed beverage in the world, trailing only water and tea but ranking first among alcoholic beverages. In recent years, producers and researchers have shown a growing interest in brewing diversification and innovation, due to of the widespread consumption of beer. In order to create beers and beer-like products with unique and consumer-pleasing characteristics, the use of unconventional raw materials has become a subject of intensive research. The purpose of this paper is to identify, evaluate and summarize the findings of all relevant unconventional raw materials used in relevant scientific studies, as well as the effect on the metabolomics of beer and beer-like beverages.For the enhancement of beer characteristics, the production process may involve the use of an extremely diverse variety of unconventional raw materials that are not included on thelist of usual ingredients for the beer industry. However, the general trend is to use locally available ingredients as well as functional ingredients. Twoof the most studied functional characteristics involve phenolic compounds and antioxidant activity, which is why the fruit is by far the most commonly used adjunct category, as fruits are particularly important sources of polyphenols and antioxidants. Other uncommon adjuncts used in brewing includeplants, starch sources, spices or even propolis. Moreover, unconventional raw materials are used to enhance the sensory profile by create new characteristics such as new tastes and flavors, accentuation of the cooling sensation or even increasing acceptability among potential consumers, who do not appreciate traditional beers due to their specific characteristics.


Subject(s)
Antioxidants , Beer , Metabolomics , Taste , Beer/analysis , Humans , Antioxidants/analysis , Fruit/chemistry , Polyphenols/analysis , Fermentation , Food Handling/methods
17.
Food Res Int ; 183: 114231, 2024 May.
Article in English | MEDLINE | ID: mdl-38760148

ABSTRACT

This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.


Subject(s)
Digestion , Flour , Food Handling , Peptides , Vicia faba , Vicia faba/chemistry , Flour/analysis , Food Handling/methods , Antioxidants/analysis , Nutritive Value , Hydrolysis , Amino Acids/analysis , Amino Acids/metabolism , Plant Proteins/metabolism
18.
Braz J Biol ; 84: e276161, 2024.
Article in English | MEDLINE | ID: mdl-38747857

ABSTRACT

The objective was to evaluate the behavior of melon genotypes (Cucumis melo L.) in the physical, chemical and biochemical quality of melon fruits as a function of electrical conductivity irrigation water levels (ECw). The experimental design adopted was randomized blocks in a 5 x 3 factorial scheme with five replications. The first factor was represented by five salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m-1) and the second factor by accessions A35, and A24, and the hybrid Sancho. The physical, chemical and biochemical variables showed a reduction in production, with smaller fruits, with less weight, smaller cavity, with increased pulp thickness for Sancho. Vitamin C and yellow flavonoids increased indicating antioxidant power against ROS. The genotypes showed similar post-harvest behavior, however, the hybrid Sancho stood out over the others, possibly because it is an improved material. Accession A24 presented physiological and biochemical responses that classify it as intolerant.


Subject(s)
Fruit , Salinity , Fruit/chemistry , Genotype , Cucumis melo/physiology , Cucumis melo/classification , Agricultural Irrigation , Cucurbitaceae/classification , Cucurbitaceae/physiology , Cucurbitaceae/genetics , Antioxidants/analysis
19.
Sci Rep ; 14(1): 11082, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744893

ABSTRACT

To investigate the effect of horsetail extract containing high silicon on morphological traits, growth, content, and compositions of essential oil of sweet basil (Ocimum basilicum L.) an experiment turned into carried out in the shape of a randomized complete block design with three replications. Foliar treatment of horsetail extract with zero, 0.5, 1, and 2% concentrations was applied on 6-8 leaf plants. The assessed traits include plant height, number of leaves per plant, number of sub-branches, leaf area index, plant fresh weight, plant dry weight, total anthocyanin, the content of total phenol and total flavonoid, antioxidant activity, essential oil content, and compounds were measured. The findings demonstrated that the increase of silicon-containing horsetail extract enhanced the improved increase in growth and phytochemical trait values. The use of horsetail extract in the 2% treatment increased plant height, the number of leaves per plant, the number of sub-branches, leaf area index, fresh weight, and dry weight of the plant by 49.79, 45.61, 91.09, 99.78, 52.78 and 109.25%, respectively, compared to the control. The highest content of total phenol (2.12 mg GAE/g DW), total flavonoid (1.73 mg RE/g DW), total anthocyanin (0.83 mg C3G/g DW), and antioxidant activity (184.3 µg/ml) was observed in the 2% extract treatment. The content of essential oil increased with increasing the concentration of horsetail extract, so the highest amount of essential oil was obtained at the concentration of 2%, which increased by 134.78% compared to the control. By using GC-MS, the essential oil was analyzed. The main components of the essential oil include methyl eugenol (12.93-25.93%), eugenol (17.63-27.51%), 1,8-cineole (15.63-20.84%), linalool (8.31-19.63%) and (Z)-caryophyllene (6.02-14.93%). Increasing the concentration of horsetail extract increased the compounds of eugenol, 1,8-cineole, and linalool in essential oil compared to the control, but decreased the compounds of methyl eugenol and (Z)-caryophyllene. Foliar spraying of horsetail extract, which contains high amounts of silicon, as a stimulant and biological fertilizer, can be a beneficial ingredient in increasing the yield and production of medicinal plants, especially in organic essential oil production.


Subject(s)
Antioxidants , Ocimum basilicum , Oils, Volatile , Plant Extracts , Plant Leaves , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Ocimum basilicum/chemistry , Ocimum basilicum/growth & development , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Plant Leaves/chemistry , Plant Leaves/growth & development , Flavonoids/analysis , Phenols/analysis , Anthocyanins/analysis
20.
Sci Rep ; 14(1): 11843, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783072

ABSTRACT

This study explored the chemical composition, antioxidant activity, and total phenol content of aerial parts from 25 accessions of three Achillea species (Achillea wilhelmsii C. Koch, Achillea vermicularis Trin., and Achillea tenuifolia Lam.). The plants were collected from various natural habitats across Iran, encompassing regions such as Central, Western, Southern, Northern, Western, and Northwestern parts of the country. Subsequently, they were grown together under field conditions. The study revealed significant variation in essential oil yields among accessions of A. wilhelmsii, ranging from 0.01 to 0.107%, A. vermicularis with a range of 0.075 to 1.5%, and A. tenuifolia showing a variation of 0.1 to 2%. The study utilized Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing 75, 49, and 75 compounds in the essential oils of A. wilhelmsii, A. tenuifolia, and A. vermicularis, respectively. Major components included camphor, 1,8-cineole, anethole, α-pinene, and phytol in A. wilhelmsii, 1,8-cineole, camphor, levo-carvone, and δ-terpinene in A. vermicularis, and ß-cubebene, elixene, ß-sesquiphellandrene, 1,8-cineole, camphor, and δ-terpinene in A. tenuifolia. The essential oil compositions of A. wilhelmsii and A. vermicularis were predominantly characterized by oxygenated monoterpenes, whereas that of A. tenuifolia was characterized by sesquiterpenes. Cluster analysis grouped accessions into three clusters, with A. tenuifolia forming a distinct group. Principal Component Analysis (PCA) triplot (62.21% of total variance) confirmed these results and provided insights into compound contributions. Furthermore, total phenolic content and antioxidant activity of the accessions of three species were assessed over 2 years. A. tenuifolia exhibited the highest levels in both categories, with statistically significant linear regression between antioxidant activity and total phenol content for A. tenuifolia and A. wilhelmsii. These findings emphasize significant phytochemical diversity within Achillea species, positioning them as promising natural sources of antioxidants. Further exploration and selection of specific accessions within each species are crucial for unlocking their medicinal potential and supporting cultivation and conservation efforts.


Subject(s)
Achillea , Antioxidants , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Phytochemicals , Achillea/chemistry , Achillea/classification , Antioxidants/analysis , Antioxidants/chemistry , Oils, Volatile/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Multivariate Analysis , Phenols/analysis , Phenols/chemistry , Iran
SELECTION OF CITATIONS
SEARCH DETAIL
...