Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.248
Filter
1.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396865

ABSTRACT

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Subject(s)
Antipsychotic Agents , Clozapine , Rats , Male , Female , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Clozapine/pharmacology , Haloperidol/pharmacology , Hepcidins/metabolism , Rats, Sprague-Dawley , Adipocytes/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Triglycerides/metabolism , Glucose/metabolism , Fatty Acids, Nonesterified/metabolism , Brain/metabolism , Perilipins/metabolism
2.
Psychoneuroendocrinology ; 163: 106987, 2024 May.
Article in English | MEDLINE | ID: mdl-38340539

ABSTRACT

Olanzapine is a second-generation antipsychotic that disrupts metabolism and is associated with an increased risk of type 2 diabetes. The hypothalamus is a key region in the control of whole-body metabolic homeostasis. The objective of the current study was to determine how acute peripheral olanzapine administration affects transcription and serine/threonine kinase activity in the hypothalamus. Hypothalamus samples from rats were collected following the pancreatic euglycemic clamp, thereby allowing us to study endpoints under steady state conditions for plasma glucose and insulin. Olanzapine stimulated pathways associated with inflammation, but diminished pathways associated with the capacity to combat endoplasmic reticulum stress and G protein-coupled receptor activity. These pathways represent potential targets to reduce the incidence of type 2 diabetes in patients taking antipsychotics.


Subject(s)
Antipsychotic Agents , Diabetes Mellitus, Type 2 , Humans , Rats , Animals , Olanzapine/pharmacology , Olanzapine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Benzodiazepines/pharmacology , Benzodiazepines/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Hypothalamus/metabolism , Gene Expression Profiling
3.
Article in English | MEDLINE | ID: mdl-37865392

ABSTRACT

Exposure to stressful experiences accounts for almost half of the risk for mental disorders. Hence, stress-induced alterations represent a key target for pharmacological interventions aimed at restoring brain function in affected individuals. We have previously demonstrated that lurasidone, a multi-receptor antipsychotic drug approved for the treatment of schizophrenia and bipolar depression, can normalize the functional and molecular impairments induced by stress exposure, representing a valuable tool for the treatment of stress-induced mental illnesses. However, the mechanisms that may contribute to the therapeutic effects of lurasidone are still poorly understood. Here, we performed a transcriptomic analysis on the prefrontal cortex (PFC) of adult male rats exposed to the chronic mild stress (CMS) paradigm and we investigated the impact of chronic lurasidone treatment on such changes. We found that CMS exposure leads to an anhedonic phenotype associated with a down-regulation of different pathways associated to neuronal guidance and synaptic plasticity within the PFC. Interestingly, a significant part of these alterations (around 25%) were counteracted by lurasidone treatment. In summary, we provided new insights on the transcriptional changes relevant for the therapeutic intervention with lurasidone, which may ultimately promote resilience.


Subject(s)
Antipsychotic Agents , Lurasidone Hydrochloride , Humans , Rats , Male , Animals , Lurasidone Hydrochloride/pharmacology , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Gene Expression Profiling , Prefrontal Cortex/metabolism , Anhedonia/physiology
4.
Xenobiotica ; 54(1): 26-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108307

ABSTRACT

Clozapine is an effective atypical antipsychotic indicated for treatment-resistant schizophrenia, but is under-prescribed due to the risk of severe adverse drug reactions such as myocarditis.A mechanistic understanding of clozapine cardiotoxicity remains elusive.This study aimed to investigate the contribution of selected CYP isoforms to cycling between clozapine and its major circulating metabolites, N-desmethylclozapine and clozapine-N-oxide, with the potential for reactive species production.CYP supersome™-based in vitro techniques were utilised to quantify specific enzyme activity associated with clozapine, clozapine-N-oxide and N-desmethylclozapine metabolism.The formation of reactive species within each incubation were quantified, and known intermediates detected.CYP3A4 predominately catalysed clozapine-N-oxide formation from clozapine and was associated with concentration-dependent reactive species production, whereas isoforms favouring the N-desmethylclozapine pathway (CYP2C19 and CYP1A2) did not produce reactive species.Extrahepatic isoforms CYP2J2 and CYP1B1 were also associated with the formation of clozapine-N-oxide and N-desmethylclozapine but did not favour one metabolic pathway over another.Unique to this investigation is that various CYP isoforms catalyse clozapine-N-oxide reduction to clozapine.This process was associated with the concentration-dependent formation of reactive species with CYP3A4, CYP1B1 and CYP1A1 that did not correlate with known reactive intermediates, implicating metabolite cycling and reactive oxygen species in the mechanism of clozapine-induced toxicity.


Subject(s)
Antipsychotic Agents , Clozapine , Reactive Oxygen Species , Cytochrome P-450 CYP3A/metabolism , Antipsychotic Agents/toxicity , Antipsychotic Agents/metabolism , Protein Isoforms , Oxides
5.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069119

ABSTRACT

Lurasidone is a novel atypical antipsychotic drug acting on dopaminergic, serotonergic and noradrenergic receptors; it is applied for the long-term treatment of schizophrenia and depression in patients with bipolar disorders. We aimed at performing a comparative study on the influence of chronic treatment with lurasidone on the expression of cytochrome P450 enzymes in the liver and in peripheral blood lymphocytes, and to evaluate the relationship between changes in the expression of CYP enzymes in the two experimental models. The obtained results show a fairly similar expression pattern of the main CYP enzymes in the rat livers and lymphocytes, and they indicate that in the liver, lurasidone exerts an inhibitory effect on the activity, protein and mRNA levels of CYP2B1/2 (not CYP2B2 mRNA), CYP2C11 and CYP2E1, while in the case of CYP3A1 and CYP3A2, it causes enzyme induction. At the same time, lurasidone decreases the expression of CYP2B, CYP2C11 (CYP2C11 protein only) and CYP2E1 but increases that of CYP3A2 (not CYP3A1) in lymphocyte cells. In conclusion, chronic treatment with lurasidone simultaneously and in the same way influences the expression and activity of CYP2B, CYP2C11, CYP2E1 and CYP3A2 in the liver and peripheral blood lymphocytes of rats. Thus, the lymphocyte cytochrome P450 profile may be utilized as an indicator of the hepatic cytochrome P450 profile in further clinical studies with lurasidone, and lymphocytes may serve as easily available surrogates for examining the impact of new drugs and chronic in vivo treatments on CYP enzyme expression, as well as to estimate drug-drug interactions and toxicity risk.


Subject(s)
Antipsychotic Agents , Humans , Rats , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Lurasidone Hydrochloride/pharmacology , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Microsomes, Liver/metabolism , RNA, Messenger/genetics , Cytochrome P-450 CYP3A/metabolism
6.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
7.
PLoS One ; 18(10): e0286278, 2023.
Article in English | MEDLINE | ID: mdl-37874822

ABSTRACT

Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies indicate that antipsychotics interact with facilitated glucose transporters (GLUT), including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport of amisulpride is compromised in AD. GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics were identified by literature review and their physicochemical characteristics summarised. Interactions between amisulpride and GLUT1 were studied using in silico approaches and the human cerebral endothelial cell line, hCMEC/D3. Brain distribution of [3H]amisulpride was determined using in situ perfusion in wild type (WT) and 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we investigated brain capillary degeneration in WT mice, 5xFAD mice and human samples. Western blots determined BBB transporter expression in mouse and human. Literature review revealed that, although D-glucose has no charge, charged molecules can interact with GLUT1. GLUT1 substrates are smaller (184.95±6.45g/mol) than inhibitors (325.50±14.40g/mol) and GLUT-interacting antipsychotics (369.38±16.04). Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [14C]D-glucose hCMEC/D3 accumulation. [3H]amisulpride uptake into the brain (except supernatant) of 5xFAD mice compared to WT remained unchanged. TEM revealed brain capillary degeneration in human AD. There was no difference in GLUT1 or P-glycoprotein BBB expression between WT and 5xFAD mice. In contrast, caudate P-glycoprotein, but not GLUT1, expression was decreased in human AD capillaries versus controls. This study provides new details about the BBB transport of amisulpride, evidence that amisulpride interacts with GLUT1 and that BBB transporter expression is altered in AD. This suggests that antipsychotics could potentially exacerbate the cerebral hypometabolism in AD. Further research into the mechanism of amisulpride transport by GLUT1 is important for improving antipsychotics safety.


Subject(s)
Alzheimer Disease , Antipsychotic Agents , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Amisulpride , Alzheimer Disease/metabolism , Glucose Transporter Type 1/metabolism , Molecular Docking Simulation , Brain/metabolism , Membrane Transport Proteins/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism
8.
Diabetes ; 72(1): 3-15, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36538602

ABSTRACT

Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and ß-cell adrenergic receptors to modify hormone secretion, α-cells and ß-cells also synthesize catecholamines locally. We propose a model where α-cells and ß-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and ß-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.


Subject(s)
Antipsychotic Agents , Islets of Langerhans , Catecholamines/metabolism , Antipsychotic Agents/adverse effects , Antipsychotic Agents/metabolism , Glycemic Control , Norepinephrine/metabolism , Dopamine/metabolism , Islets of Langerhans/metabolism , Neurotransmitter Agents/metabolism
9.
Environ Sci Pollut Res Int ; 30(9): 23637-23645, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36327078

ABSTRACT

Chlorpromazine (CPZ) is a neuroleptic and antipsychotic medication for individuals suffering from schizophrenia and other medical conditions. This study investigated the effects of CPZ on the hematological, biochemical, and biometric characteristics in juvenile Clarias gariepinus. The fish were exposed to 0.53, 1.06, and 2.11 mgL-1 CPZ for 15 days after which they were withdrawn from the toxicant and allowed to recover for 5 days. Blood were sampled from the fish on days 1, 5, 10, 15, and during the 5-day recovery for hematological and biochemical analysis, and thereafter, the fish were sacrificed for the morphometric analysis. While the values of the white blood cells significantly increased in the exposed fish, the hemoglobin, red blood cells, and packed cell volume decreased. Compared with the control, there were no significant differences in the values of the blood derivatives in the exposed fish. The values of protein and glucose reduced, but those of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were significantly elevated. Though there was no significant difference in the condition factor, a significant increase in hepatosomatic index occurred on day 15 at 5.28 mg/L CPZ. After the 5-day withdrawal from the drug, most of the studied parameters returned to the control values. The present study indicated that CPZ is toxic to fish and should be used with utmost care to guard against toxicological effect on non-target organisms.


Subject(s)
Antipsychotic Agents , Catfishes , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Chlorpromazine/metabolism , Chlorpromazine/pharmacology , Hematocrit , Erythrocytes , Catfishes/metabolism , Biometry
10.
Sci Total Environ ; 856(Pt 1): 159054, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36170916

ABSTRACT

Olanzapine (OLA) is a common drug used to treat schizophrenia and has recently come under increasing scrutiny as an emerging contaminant. However, its impact on lipid metabolism in fish and its mechanisms of action are not well understood. In this study, common carp were exposed to 0, 10, 100, and 250 µM OLA for 60 days. The results indicated that OLA exposure increased weight gain, total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG) and decreased high-density lipoprotein (HDL). In addition, lipids accumulated in the liver of the common carp. To explore the underlying mechanisms of action, gut microbiota, short-chain fatty acids (SCFAs), liver transcripts, and genes related to lipid metabolism were measured. It was discovered that OLA exposure altered the common carp gut microbiota composition and increased the abundance of SCFA-producing bacteria. Correspondingly, this study showed that OLA exposure increased the levels of SCFAs, which are highly relevant to the development of lipid accumulation. Transcriptome sequencing results indicated that OLA exposure could change lipid metabolism signalling pathways, including steroid biosynthesis, the PPAR signalling pathway, asglycerophospholipid metabolism, glycerolipid metabolism, and fatty acid metabolic pathways of the common carp. Additionally, OLA exposure interrupted lipid metabolism by means of significant upregulation of lipid synthesis-related genes, including pparγ, srebp1, and fas. OLA exposure also resulted in significant lipolysis-related gene downregulation, including cpt, lpl, hsl, and pparα. The results of this study indicated that contamination of aquatic environments with OLA alters lipid metabolism in common carp. In addition, the underlying mechanism might be due in part to the modulation of the gut microbiota-SCFA-PPAR signalling pathway.


Subject(s)
Antipsychotic Agents , Carps , Gastrointestinal Microbiome , Animals , Carps/metabolism , Lipid Metabolism , Olanzapine/metabolism , Antipsychotic Agents/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Fatty Acids, Volatile/metabolism , Liver/metabolism
11.
Life Sci ; 311(Pt B): 121198, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36396112

ABSTRACT

AIMS: Herein, we investigate the potential of levosulpiride-loaded nanostructured lipid carriers (LEVO-NLCs) for effective brain delivery with anti-psychotic and antidepressant effects. MAIN METHODS: Micro-emulsion method was used to prepare LEVO-NLCs, followed by its optimization using Design Expert®, investigation of the particles properties and entrapment efficiency (%EE). Moreover, in-vitro release, in-vivo plasma and brain kinetic studies of LEVO-NLCs were executed. Anti-psychotic activity of LEVO-NLCs was accomplished in LPS-induced psychosis mice model. Additionally, expressions of neuro inflammatory mediators, neurodegeneration and neuro-inflammation in brain tissues was investigated. KEY FINDINGS: The optimized LEVO-NLCs were rounded shaped nanoparticles (157.2 nm) with suitable zeta potential (-29.6 mV), low PDI (0.395) and high EE (83.67 %). No chemical interactions were found, however, the crystalline drug was changed to amorphous. LEVO-NLCs displayed sustained drug release behavior when compared with drug suspension. Moreover, a meaningfully higher AUC (106,642.27 ± 876.44 ng.h/mL) and Cmax (38,534.72 ± 2344.10 ng/mL) of the LEVO-NLCs in brain was observed as compared to the AUC (15,684.33 ± 1005.49 ng.h/mL) and Cmax (7717.56 ± 871.23 ng/mL) of LEVO-Suspension. Similar profiles of both the formulations were perceived in plasma pharmacokinetic studies. Furthermore, LEVO-NLCs exhibited a meaningfully improved anti-psychotic activity in LPS-induced psychosis mice model with reduced immobility time and enhanced struggling time. Likewise, treatment with LEVO-NLCs showed reduced levels of neuro inflammatory markers (p-NF-κB and COX-2) in LPS-induced mice. Additionally, no neuro-degeneration and neuro-inflammation in brain tissues treated with LEVO-NLCs mice group was detected. SIGNIFICANCE: These results concluded that NLCs may effectively be used for the brain delivery of various active pharmaceutical agents with enhanced biopharmaceutical performance.


Subject(s)
Antipsychotic Agents , Animals , Mice , Antipsychotic Agents/metabolism , Drug Carriers/chemistry , Kinetics , Lipopolysaccharides/metabolism , Particle Size , Brain/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Inflammation/metabolism
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232936

ABSTRACT

Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug's class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.


Subject(s)
Antipsychotic Agents , Haloperidol , Adenosine/metabolism , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Genes, Immediate-Early , Glutamates/metabolism , Haloperidol/pharmacology , Mice , Mice, Transgenic , N-Methylaspartate/metabolism , Neurons/metabolism , Receptors, Dopamine D1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
13.
Sci Rep ; 12(1): 12610, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871219

ABSTRACT

The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.


Subject(s)
Antipsychotic Agents , Dopamine , Antipsychotic Agents/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Gene Regulatory Networks , Humans , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism
14.
Sci Rep ; 12(1): 12106, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840763

ABSTRACT

The dopamine blockade by antipsychotics trigger subjective dysphoria. Compared with D2 antagonists, aripiprazole, a D2 partial agonist, was expected to produce a different experience. Indeed, a previous study reported no relationship between the D2 receptor occupancy by aripiprazole and subjective dysphoria, while the D2 receptor occupancy by antagonists was associated with negative subjective experiences. This study revisited the relationship in patients treated with aripiprazole by using an inhibitory Emax model, which enables the individual drug-free binding potential and D2 receptor occupancy to be properly estimated. Eight patients with schizophrenia who have been clinically stable on aripiprazole were enrolled. Assessments including Positive and Negative Syndrome Scale (PANSS) and Subjective Well-being under Neuroleptics Scale (Kv-SWN) were administered. [11C]raclopride PET scan were conducted 2, 26, and 74 h after aripiprazole administration. Regression analysis showed a significant negative association between the D2 receptor occupancy by aripiprazole in the striatum and the Kv-SWN (R2 = 0.55, p = 0.036), but the PANSS total score was not associated with the Kv-SWN (R2 = 0.42, p = 0.080). The negative association between D2 receptor occupancy by aripiprazole and subjective well-being implies that clinicians should find the lowest effective doses of aripiprazole for clinically stable patients to improve their subjective experiences and clinical outcomes.


Subject(s)
Antipsychotic Agents , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Aripiprazole/pharmacology , Humans , Positron-Emission Tomography , Raclopride/metabolism , Receptors, Dopamine D2/metabolism
15.
BMB Rep ; 55(6): 293-298, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35651327

ABSTRACT

Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia. [BMB Reports 2022; 55(6): 293-298].


Subject(s)
Antipsychotic Agents , Metformin , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Aripiprazole/metabolism , Aripiprazole/pharmacology , Female , Hypothalamus/metabolism , Leptin/metabolism , Metformin/metabolism , Metformin/pharmacology , Mice , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Olanzapine/metabolism , Olanzapine/pharmacology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology
16.
Mol Med ; 28(1): 46, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505281

ABSTRACT

BACKGROUND: Risperidone, an atypical antipsychotic, impedes serotonin and dopamine receptor systems. Meanwhile, tumor necrosis factor-α (TNF-α) is known to participate in regulating osteoblast functions. Consequently, the current study aimed to investigate whether the influences of Risperidone on osteoblast functions are associated with TNF-α and special AT-rich sequence-binding protein (SATB2). METHODS: Firstly, we searched the DGIdb, MEM and GeneCards databases to identify the critical factors involved in the effects of Risperidone on osteoblasts, as well as their interactions. Afterwards, osteoblast cell line MC3T3-E1 was transduced with lentivirus carrying si-TNF-α, si-SATB2 or both and subsequently treated with Risperidone. Various abilities including differentiation, autophagy and apoptosis of osteoblasts were examined after different treatments. Finally, animal experiments were performed with Risperidone alone or together with lentivirus to verify the function of Risperidone in vivo and the mechanism. RESULTS: It was found that Risperidone might promote TNF-α expression, thereby inhibiting the expression of SATB2 to affect the autophagy and apoptosis in osteoblasts. Furthermore, as shown by our experimental findings, Risperidone treatment inhibited the differentiation and autophagy, and promoted the apoptosis of osteoblasts, as evidenced by elevated levels of OPG, p62, cleaved PARP1, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9, and reduced levels of LC3 II/I, Beclin1, collagen I, and RANKL. In addition, Risperidone was also found to elevate the expression of TNF-α to down-regulate SATB2, thereby inhibiting the differentiation and autophagy and enhancing the apoptosis of osteoblasts in vitro and in vivo. CONCLUSIONS: Collectively, our findings indicated that Risperidone affects the differentiation of osteoblasts by inhibiting autophagy and enhancing apoptosis via TNF-α-mediated down-regulation of SATB2.


Subject(s)
Antipsychotic Agents , Risperidone , Animals , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacology , Apoptosis , Autophagy , Osteoblasts , Risperidone/metabolism , Risperidone/pharmacology , Tumor Necrosis Factor-alpha/metabolism
17.
Mol Psychiatry ; 27(5): 2393-2404, 2022 05.
Article in English | MEDLINE | ID: mdl-35264726

ABSTRACT

A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/metabolism , Antipsychotic Agents/therapeutic use , Brain/metabolism , Energy Metabolism , Humans , Psychotic Disorders/metabolism , Schizophrenia/metabolism
18.
Schizophr Bull ; 48(2): 474-484, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34865170

ABSTRACT

Allosteric modulation represents an important approach in drug discovery because of its advantages in safety and selectivity. SOMCL-668 is the first selective and potent sigma-1 receptor allosteric modulator, discovered in our laboratory. The present work investigates the potential therapeutic effects of SOMCL-668 on phencyclidine (PCP)-induced schizophrenia-related behavior in mice and further elucidates underlying mechanisms for its antipsychotic-like effects. SOMCL-668 not only attenuated acute PCP-induced hyperactivity and PPI disruption, but also ameliorated social deficits and cognitive impairment induced by chronic PCP treatment. Pretreatment with the selective sigma-1 receptor antagonist BD1047 blocked the effects of SOMCL-668, indicating sigma-1 receptor-mediated responses. This was confirmed using sigma-1 receptor knockout mice, in which SOMCL-668 failed to ameliorate PPI disruption and hyperactivity induced by acute PCP and social deficits and cognitive impairment induced by chronic PCP treatment. Additionally, in vitro SOMCL-668 exerted positive modulation of sigma-1 receptor agonist-induced intrinsic plasticity in brain slices recorded by patch-clamp. Furthermore, in vivo lower dose of SOMCL-668 exerted positive modulation of improvement in social deficits and cognitive impairment induced by the selective sigma-1 agonist PRE084. Also, SOMCL-668 reversed chronic PCP-induced down-regulation in expression of frontal cortical p-AKT/AKT, p-CREB/CREB and BDNF in wide-type but not sigma-1 knockout mice. Moreover, administration of the PI3K/AKT inhibitor LY294002 abolished amelioration by SOMCL-668 of chronic PCP-induced schizophrenia-related behaviors by inhibition of BDNF expression. The present data provide initial, proof-of-concept evidence that allosteric modulation of the sigma-1 receptor may be a novel approach for the treatment of psychotic illness.


Subject(s)
Allosteric Regulation/drug effects , Antipsychotic Agents/pharmacokinetics , Receptors, sigma/drug effects , Allosteric Regulation/physiology , Animals , Antipsychotic Agents/metabolism , Disease Models, Animal , Mice , Receptors, sigma/metabolism , Sigma-1 Receptor
19.
Psychopharmacology (Berl) ; 239(11): 3439-3445, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34175983

ABSTRACT

Adenosine A2A receptors are highly enriched in the basal ganglia system, a region that is functionally implicated in schizophrenia. Preclinical evidence suggests a cross-regulation between adenosine A2A and dopamine D2 receptors in this region and that it is linked to the sensitization of the dopamine system. However, the relationship between A2A receptor availability and schizophrenia has not been directly examined in vivo in patients with this disorder. To investigate, using positron emission tomography (PET), the availability of A2A receptors in patients diagnosed with schizophrenia in comparison to matched healthy controls. A2A receptor availability was measured using the PET tracer [11C]SCH442416. Twelve male patients with chronic schizophrenia were compared to 13 matched healthy subjects. All patients were medicated with antipsychotics and none presented with any motor or extrapyramidal symptoms. Binding potential (BPND), a ratio measure between specific and non-specific tracer uptake, were compared between the groups for the caudate, putamen, accumbens and globus pallidum. There was no differences between A2A receptor binding potential (BPND) of schizophrenia patients in the caudate (p = 0.16), putamen (p = 0.86), accumbens (p = 0.44) and globus pallidum (p = 0.09) to that of matched healthy subjects. There was also no significant correlation between [11C]SCH442416 binding and severity of psychotic symptoms (p = 0.2 to 0.82) or antipsychotic dosage (p = 0.13 to 0.34). By showing that A2A receptor availability in medicated patients with chronic male schizophrenia is not different than in healthy controls, this study does not support the primary role of this receptor in the pathogenesis of schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Male , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/metabolism , Receptor, Adenosine A2A/metabolism , Adenosine/metabolism , Dopamine/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Putamen/metabolism
20.
Toxins (Basel) ; 13(11)2021 11 18.
Article in English | MEDLINE | ID: mdl-34822595

ABSTRACT

The binding of drugs to plasma protein is frequently altered in certain types of renal diseases. We recently reported on the effects of oxidation and uremic toxins on the binding of aripiprazole (ARP) to human serum albumin. In our continuing investigations, we examined the binding of ARP to plasma pooled from patients with chronic renal dysfunction. We examined the issue of the molecular basis for which factors affect the changes in drug binding that accompany renal failure. The study was based on the statistical relationships between ARP albumin binding and biochemical parameters such as the concentrations of oxidized albumin and uremic toxins. The binding of ARP to plasma from chronic renal patients was significantly lower than healthy volunteers. A rational relationship between the ARP binding rate and the concentration of toxins, including indoxyl sulphate (IS) and p-cresyl sulphate (PCS), was found, particularly for IS. Moreover, multiple regression analyses that involved taking other parameters such as PCS or oxidized albumin ratio to IS into account supports the above hypothesis. In conclusion, the limited data reported in this present study indicates that monitoring IS in the blood is a very important determinant in the dosage plan for the administration of site II drugs such as ARP, if the efficacy of the drug in renal disease is to be considered.


Subject(s)
Antipsychotic Agents/metabolism , Aripiprazole/metabolism , Blood Proteins/metabolism , Kidney Failure, Chronic/blood , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cresols/metabolism , Female , Humans , Indican/metabolism , Male , Protein Binding , Retrospective Studies , Serum Albumin, Human/metabolism , Sulfuric Acid Esters/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...