Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.910
Filter
2.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717801

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Subject(s)
Adaptation, Physiological , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/physiology , Hydrogen-Ion Concentration , Animals , Humans , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/microbiology , Virulence , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antitubercular Agents/pharmacology
3.
Front Public Health ; 12: 1337357, 2024.
Article in English | MEDLINE | ID: mdl-38689770

ABSTRACT

Introduction: A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods: A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results: A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion: This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.


Subject(s)
Genotype , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Ecuador/epidemiology , Humans , Prevalence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Genetic Variation , Antitubercular Agents/pharmacology , Adult , Male , Female , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Adolescent
4.
PLoS One ; 19(5): e0301210, 2024.
Article in English | MEDLINE | ID: mdl-38709710

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Subject(s)
Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Nepal/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Cross-Sectional Studies , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Middle Aged , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Rifampin/therapeutic use , Rifampin/pharmacology , Isoniazid/therapeutic use , Isoniazid/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Adolescent , Aged
5.
Infect Genet Evol ; 121: 105603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723983

ABSTRACT

In the mountainous, rural regions of eastern China, tuberculosis (TB) remains a formidable challenge; however, the long-term molecular epidemiological surveillance in these regions is limited. This study aimed to investigate molecular and spatial epidemiology of TB in two mountainous, rural counties of Zhejiang Province, China, from 2015 to 2021, to elucidate the recent transmission and drug-resistance profiles. The predominant Lineage 2 (L2) Beijing family accounted for 80.1% of total 532 sequenced Mycobacterium tuberculosis (Mtb) strains, showing consistent prevalence over seven years. Gene mutations associated with drug resistance were identified in 19.4% (103/532) of strains, including 47 rifampicin or isoniazid-resistant strains, eight multi-drug-resistant (MDR) strains, and five pre-extensively drug-resistant (pre-XDR) strains. Genomic clustering revealed 53 distinct clusters with an overall transmission clustering rate of 23.9% (127/532). Patients with a history of retreatment and those infected with L2 strains had a higher risk of recent transmission. Spatial and epidemiological analysis unveiled significant transmission hotspots, especially in densely populated urban areas, involving various public places such as medical institutions, farmlands, markets, and cardrooms. The study emphasizes the pivotal role of Beijing strains and urban-based TB transmission in the western mountainous regions in Zhejiang, highlighting the urgent requirement for specific interventions to mitigate the impact of TB in these unique communities.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Female , Male , Adult , Middle Aged , Prospective Studies , Incidence , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Spatial Analysis , Young Adult , Adolescent , Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Molecular Epidemiology , Antitubercular Agents/pharmacology , Genomics/methods , Phylogeny
6.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702782

ABSTRACT

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , China/epidemiology , Humans , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Prevalence , Nitroimidazoles/pharmacology , Genotype , Mutation , Whole Genome Sequencing
7.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731549

ABSTRACT

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Biosynthesis , Peptide Elongation Factors/metabolism , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Ribosomes/metabolism , Models, Molecular , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/metabolism , Protein Conformation
8.
Front Immunol ; 15: 1347045, 2024.
Article in English | MEDLINE | ID: mdl-38756781

ABSTRACT

It is essential to understand the interactions and relationships between Mycobacterium tuberculosis (Mtb) and macrophages during the infection in order to design host-directed, immunomodulation-dependent therapeutics to control Mtb. We had reported previously that ornithine acetyltransferase (MtArgJ), a crucial enzyme of the arginine biosynthesis pathway of Mtb, is allosterically inhibited by pranlukast (PRK), which significantly reduces bacterial growth. The present investigation is centered on the immunomodulation in the host by PRK particularly the activation of the host's immune response to counteract bacterial survival and pathogenicity. Here, we show that PRK decreased the bacterial burden in the lungs by upregulating the population of pro-inflammatory interstitial macrophages (IMs) and reducing the population of Mtb susceptible alveolar macrophages (AMs), dendritic cells (DCs), and monocytes (MO). Additionally, we deduce that PRK causes the host macrophages to change their metabolic pathway from fatty acid metabolism to glycolytic metabolism around the log phage of bacterial multiplication. Further, we report that PRK reduced tissue injury by downregulating the Ly6C-positive population of monocytes. Interestingly, PRK treatment improved tissue repair and inflammation resolution by increasing the populations of arginase 1 (Arg-1) and Ym1+Ym2 (chitinase 3-like 3) positive macrophages. In summary, our study found that PRK is useful not only for reducing the tubercular burden but also for promoting the healing of the diseased tissue.


Subject(s)
Chromones , Disease Models, Animal , Mycobacterium tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mice , Chromones/pharmacology , Chromones/therapeutic use , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mice, Inbred C57BL , Female , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/drug therapy , Lung/microbiology , Lung/immunology , Lung/pathology
9.
PLoS One ; 19(5): e0303173, 2024.
Article in English | MEDLINE | ID: mdl-38739587

ABSTRACT

In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Pyrroles , Tetrahydrofolate Dehydrogenase , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Microbial Sensitivity Tests , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/chemical synthesis , Humans , Structure-Activity Relationship , Catalytic Domain
10.
Nat Commun ; 15(1): 4175, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755132

ABSTRACT

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Single-Cell Analysis , Tuberculosis , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Single-Cell Analysis/methods , Tuberculosis/drug therapy , Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Microfluidics/methods , Phenotype , Drug Discovery/methods , Drug Synergism
11.
Life Sci Alliance ; 7(7)2024 07.
Article in English | MEDLINE | ID: mdl-38744470

ABSTRACT

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Subject(s)
Benzothiazoles , Drug Synergism , Mycobacterium marinum , Zebrafish , Animals , Benzothiazoles/pharmacology , Mycobacterium marinum/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Cell Membrane Permeability/drug effects , Macrophages/drug effects , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Cell Membrane/metabolism , Cell Membrane/drug effects , Rifampin/pharmacology
12.
Int J Mycobacteriol ; 13(1): 7-14, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771273

ABSTRACT

BACKGROUND: The overexpression of efflux pumps (Eps) was reported to contribute to multidrug resistant tuberculosis (MDR-TB). Increases in Eps that expel structurally unrelated drugs contribute to reduced susceptibility by decreasing the intracellular concentration of antibiotics. In the present study, an association of mycobacterial membrane protein (MmpS5-MmpL5) Ep and its gene regulator (Rv0678) was investigated in MDR-tuberculosis isolates. METHODS: MTB strains were isolated from patients at two different intervals, i.e., once when they had persistent symptoms despite 3-15 ≥ months of treatment and once when they had started new combination therapy ≥2-3 months. Sputum specimens were subjected to Xpert MTB/rifampicin test and then further susceptibility testing using proportional method and multiplex polymerase chain reaction (PCR) were performed on them. The isolates were characterized using both 16S-23S RNA and hsp65 genes spacer (PCR-restriction fragment length polymorphism). Whole-genome sequencing (WGS) was investigated on two isolates from culture-positive specimen per patient. The protein structure was simulated using the SWISS-MODEL. The input format used for this web server was FASTA (amino acid sequence). Protein structure was also analysis using Ramachandran plot. RESULTS: WGS documented deletion, insertion, and substitution in transmembrane transport protein MmpL5 (Rv0676) of Eps. Majority of the studied isolates (n = 12; 92.3%) showed a unique deletion mutation at three positions: (a) from amino acid number 771 (isoleucine) to 776 (valine), (b) from amino acid number 785 (valine) to 793 (histidine), and (c) from amino acid number 798 (leucine) to 806 (glycine)." One isolate (7.6%) had no deletion mutation. In all isolates (n = 13; 100%), a large insertion mutation consisting of 94 amino acid was observed "from amino acid number 846 (isoleucine) to amino acid number 939 (leucine)". Thirty-eight substitutions in Rv0676 were detected, of which 92.3% were identical in the studied isolates. WGS of mycobacterial membrane proteins (MmpS5; Rv0677) and its gene regulator (Rv0678) documented no deletion, insertion, and substitution. No differences were observed between MmpS5-MmpL5 and its gene regulator in isolates that were collected at different intervals. CONCLUSIONS: Significant genetic mutation like insertion, deletion, and substitution within transmembrane transport protein MmpL5 (Rv0676) can change the functional balance of Eps and cause a reduction in drug susceptibility. This is the first report documenting a unique amino acid mutation (insertion and deletion ≥4-94) in Rv0676 among drug-resistant MTB. We suggest the changes in Mmpl5 (Rv0676) might occurred due to in-vivo sub-therapeutic drug stress within the host cell. Changes in MmpL5 are stable and detected through subsequent culture-positive specimens.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing , Sputum/microbiology
13.
Int J Mycobacteriol ; 13(1): 22-27, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771275

ABSTRACT

BACKGROUND: Although Zimbabwe has transitioned out of the 30 high-burden countries, it still remained in the 30 high multidrug-resistant (MDR)/rifampicin-resistant tuberculosis (TB) burden. Rapid detection of rifampicin (RIF) and isoniazid (INH) is essential for the diagnosis of MDR-TB. The World Health Organization has recommended the use of molecular WHO-recommended rapid diagnostic (mWRD) for TB and DR-TB. STANDARD™ M10 MDR-TB assay is a new molecular rapid diagnostic assay developed by SD Biosensor for the detection of Mycobacterium tuberculosis (MTB) and RIF and INF resistance. This study aims to determine the diagnostic accuracy of STANDARD™ M10 MDR-TB assay. METHODS: The study was conducted on 214 samples with different MTB and RIF and INH resistance status. The STANDARD™ M10 MDR-TB assay was performed according to the manufacturer's instructions. Xpert MTB/RIF Ultra, MGIT culture, and phenotypic drug susceptibility testing are used as comparative methods. RESULTS: The sensitivity and specificity of STANDARD™ M10 MDR-TB assay for the detection of MTB are 99% and 97.9%, respectively. The sensitivity and specificity of the assay for detection of MDR-TB were 97.8% and 100%, respectively. CONCLUSION: The STANDARD™ M10 MDR-TB assay demonstrated high diagnostic accuracy in the detection of MTB and RIF and INH resistance. This molecular assay can also be used as an alternative to other mWRD assays.


Subject(s)
Antitubercular Agents , Isoniazid , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Rifampin/pharmacology , Zimbabwe , Humans , Isoniazid/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Molecular Diagnostic Techniques/methods
14.
Int J Mycobacteriol ; 13(1): 73-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771283

ABSTRACT

BACKGROUND: Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS: The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS: Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION: Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis , United States Food and Drug Administration , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , United States , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Sulfotransferases/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Approval , Humans , Ligands , Tuberculosis/microbiology , Tuberculosis/drug therapy
15.
Int J Mycobacteriol ; 13(1): 91-95, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771285

ABSTRACT

BACKGROUND: Rapid detection of tuberculosis (TB) and its resistance are essential for the prompt initiation of correct drug therapy and for stopping the spread of drug-resistant TB. There is an urgent need for increased use of rapid diagnostic tests to control the threat of increased TB and multidrug-resistant TB (MDR-TB). METHODS: EMPE Diagnostics has developed a multiplex molecular diagnostic platform called mfloDx™ by combining nucleotide-specific padlock probe-dependent rolling circle amplification with sensitive lateral flow biosensors, providing visual signals, similar to a COVID-19 test. The first test kit of this platform, mfloDx™ MDR-TB can identify Mycobacterium tuberculosis (MTB) complex and its clinically significant mutations in the rpoB and katG genes and in the inhA promotor contributing resistance to rifampicin (RIF) and isoniazid (INH), causing MDR-TB. RESULTS: We have evaluated the performance of the mfloDx™ MDR-TB test on 210 sputum samples (110 from suspected TB cases and 100 from TB-negative controls) received from a tertiary care center in India. The clinical sensitivity for detecting MTB compared to acid-fast microscopy and mycobacteria growth indicator tube (MGIT) cultures was 86.4% and 84.9%, respectively. All the 100 control samples were negative indicating excellent specificity. In smear-positive sputum samples, the mfloDx™ MDR-TB test showed a sensitivity of 92.5% and 86.4% against MGIT culture and Xpert MTB/RIF, respectively. The clinical sensitivity for the detection of RIF and INH resistance in comparison with MGIT drug susceptibility testing was 100% and 84.6%, respectively, while the clinical specificity was 100%. CONCLUSION: From the above evaluation, we find mfloDx™ MDR-TB to be a rapid and efficient test to detect TB and its multidrug resistance in 3 h at a low cost making it suitable for resource-limited laboratories.


Subject(s)
Antitubercular Agents , Isoniazid , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Rifampin/pharmacology , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Sputum/microbiology , Bacterial Proteins/genetics , India , Molecular Diagnostic Techniques/methods , Catalase , Oxidoreductases
16.
Sci Rep ; 14(1): 11315, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760437

ABSTRACT

Decaprenylphosphoryl-ß-D-ribose-2'-epimerase (DprE1), a crucial enzyme in the process of arabinogalactan and lipoarabinomannan biosynthesis, has become the target of choice for anti-TB drug discovery in the recent past. The current study aims to find the potential DprE1 inhibitors through in-silico approaches. Here, we built the pharmacophore and 3D-QSAR model using the reported 40 azaindole derivatives of DprE1 inhibitors. The best pharmacophore hypothesis (ADRRR_1) was employed for the virtual screening of the chEMBL database. To identify prospective hits, molecules with good phase scores (> 2.000) were further evaluated by molecular docking studies for their ability to bind to the DprE1 enzyme (PDB: 4KW5). Based on their binding affinities (< - 9.0 kcal/mole), the best hits were subjected to the calculation of free-binding energies (Prime/MM-GBSA), pharmacokinetic, and druglikeness evaluations. The top 10 hits retrieved from these results were selected to predict their inhibitory activities via the developed 3D-QSAR model with a regression coefficient (R2) value of 0.9608 and predictive coefficient (Q2) value of 0.7313. The induced fit docking (IFD) studies and in-silico prediction of anti-TB sensitivity for these top 10 hits were also implemented. Molecular dynamics simulations (MDS) were performed for the top 5 hit molecules for 200 ns to check the stability of the hits with DprE1. Based on their conformational stability throughout the 200 ns simulation, hit 2 (chEMBL_SDF:357100) was identified as the best hit against DprE1 with an accepted safety profile. The MD results were also in accordance with the docking score, MM-GBSA value, and 3D-QSAR predicted activity. The hit 2 molecule, (N-(3-((2-(((1r,4r)-4-(dimethylamino)cyclohexyl)amino)-9-isopropyl-9H-purin-6-yl)amino)phenyl)acrylamide) could serve as a lead for the discovery of a novel DprE1 inhibiting anti-TB drug.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Humans , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Tuberculosis/drug therapy , Computer Simulation , Molecular Dynamics Simulation , Protein Binding , Drug Discovery/methods , Alcohol Oxidoreductases
17.
BMC Infect Dis ; 24(1): 511, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773443

ABSTRACT

INTRODUCTION: This study aimed to analyze the risk factors associated with isoniazid-resistant and rifampicin-susceptible tuberculosis (Hr-TB) in adults. METHOD: The clinical data of 1,844 adult inpatients diagnosed with culture-positive pulmonary tuberculosis (PTB) in Nanjing Second Hospital from January 2019 and December 2021 were collected. All culture positive strain from the patient specimens underwent drug susceptibility testing (DST). Among them, 166 patients with Hr-TB were categorized as the Hr-TB group, while the remaining 1,678 patients were classified as having drug-susceptible tuberculosis (DS-TB). Hierarchical logistic regression was employed for multivariate analysis to identify variables associated with Hr-TB. RESULTS: Multivariate logistic regression analysis revealed that individuals with diabetes mellitus (DM) (OR 1.472, 95% CI 1.037-2.088, p = 0.030) and a history of previous tuberculosis treatment (OR 2.913, 95% CI 1.971-4.306, p = 0.000) were at higher risk of developing adult Hr-TB, with this risk being more pronounced in male patients. Within the cohort, 1,640 patients were newly treated, and among them, DM (OR 1.662, 95% CI 1.123-2.461, p = 0.011) was identified as risk factors for Hr-TB. CONCLUSIONS: Diabetes mellitus is a risk factor for Hr-TB in adults, and the contribution of diabetes as a risk factor was more pronounced in the newly treatment or male subgroup. And previous TB treatment history is also a risk factor for Hr-TB in adults.


Subject(s)
Antitubercular Agents , Isoniazid , Mycobacterium tuberculosis , Rifampin , Tuberculosis, Pulmonary , Humans , Male , Female , Risk Factors , Isoniazid/therapeutic use , Isoniazid/pharmacology , Rifampin/therapeutic use , Rifampin/pharmacology , Middle Aged , Adult , China/epidemiology , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Aged , Young Adult , Retrospective Studies , Diabetes Mellitus/epidemiology , Diabetes Mellitus/microbiology
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732102

ABSTRACT

Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.


Subject(s)
Cytochrome P-450 Enzyme System , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Structure-Activity Relationship , Catalytic Domain , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemistry , Models, Molecular , Humans , Protein Binding , Substrate Specificity , Ligands , Protein Conformation
19.
Sci Rep ; 14(1): 10904, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740859

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, ranks among the top causes of global human mortality, as reported by the World Health Organization's 2022 TB report. The prevalence of M. tuberculosis strains that are multiple and extensive-drug resistant represents a significant barrier to TB eradication. Fortunately, having many completely sequenced M. tuberculosis genomes available has made it possible to investigate the species pangenome, conduct a pan-phylogenetic investigation, and find potential new drug targets. The 442 complete genome dataset was used to estimate the pangenome of M. tuberculosis. This study involved phylogenomic classification and in-depth analyses. Sequential filters were applied to the conserved core genome containing 2754 proteins. These filters assessed non-human homology, virulence, essentiality, physiochemical properties, and pathway analysis. Through these intensive filtering approaches, promising broad-spectrum therapeutic targets were identified. These targets were docked with FDA-approved compounds readily available on the ZINC database. Selected highly ranked ligands with inhibitory potential include dihydroergotamine and abiraterone acetate. The effectiveness of the ligands has been supported by molecular dynamics simulation of the ligand-protein complexes, instilling optimism that the identified lead compounds may serve as a robust basis for the development of safe and efficient drugs for TB treatment, subject to further lead optimization and subsequent experimental validation.


Subject(s)
Antitubercular Agents , Drug Design , Mycobacterium tuberculosis , Proteomics , Tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Proteomics/methods , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phylogeny , Molecular Docking Simulation , Molecular Dynamics Simulation , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...