Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.076
Filter
1.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
2.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
3.
J Infect Dev Ctries ; 18(4): 520-531, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728643

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic caused global health, economic, and population loss. Variants of the coronavirus contributed to the severity of the disease and persistent rise in infections. This study aimed to identify potential drug candidates from fifteen approved antiviral drugs against SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike protein (6M0J) using virtual screening and pharmacokinetics to gain insights into COVID-19 therapeutics. METHODOLOGY: We employed drug repurposing approach to analyze binding performance of fifteen clinically approved antiviral drugs against the main protease of SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike proteins bound to ACE-2 receptor (6M0J), to provide an insight into the therapeutics of COVID-19. AutoDock Vina was used for docking studies. The binding affinities were calculated, and 2-3D structures of protein-ligand interactions were drawn. RESULTS: Rutin, hesperidin, and nelfinavir are clinically approved antiviral drugs with high binding affinity to proteins 6LU7, 5B6O, and 6M0J. These ligands have excellent pharmacokinetics, ensuring efficient absorption, metabolism, excretion, and digestibility. Hesperidin showed the most potent interaction with spike protein 6M0J, forming four H-bonds. Nelfinavir had a high human intestinal absorption (HIA) score of 0.93, indicating maximum absorption in the body and promising interactions with 6LU7. CONCLUSIONS: Our results indicated that rutin, hesperidin, and nelfinavir had the highest binding results against the proposed drug targets. The computational approach effectively identified SARS-CoV-2 inhibitors. COVID-19 is still a recurrent threat globally and predictive analysis using natural compounds might serve as a starting point for new drug development against SARS-CoV-2 and related viruses.


Subject(s)
Antiviral Agents , COVID-19 , Drug Repositioning , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Pandemics , Betacoronavirus/drug effects , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry
4.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792094

ABSTRACT

Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.


Subject(s)
Antiviral Agents , Heterocyclic Compounds , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Humans , Virus Replication/drug effects , Structure-Activity Relationship , Viruses/drug effects , Virus Diseases/drug therapy , Animals
5.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792236

ABSTRACT

Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.


Subject(s)
Antiviral Agents , Biological Products , Influenza A Virus, H1N1 Subtype , Influenza, Human , Phytochemicals , Influenza A Virus, H1N1 Subtype/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/therapeutic use
6.
Narra J ; 4(1): e319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798846

ABSTRACT

Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH3)2 derivative of darunavir, N(CH3)2 derivative of amprenavir and NCH3 derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH3 derivative of abacavir (-6.506 kJ/mol), NO2 derivative of didanosine (-6.877 kJ/mol), NCH3 derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , SARS-CoV-2/drug effects , Drug Repositioning , COVID-19 Drug Treatment , Models, Molecular , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pandemics
7.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710573

ABSTRACT

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
8.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731545

ABSTRACT

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antiviral Agents , Copper , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Copper/chemistry , Copper/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Staphylococcus aureus/drug effects , Textiles , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Lignin/chemistry , Lignin/pharmacology , Humans
9.
Drug Des Devel Ther ; 18: 1547-1571, 2024.
Article in English | MEDLINE | ID: mdl-38737333

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Heterocyclic Compounds , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/therapeutic use , SARS-CoV-2/drug effects , COVID-19
10.
Curr Microbiol ; 81(7): 169, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733424

ABSTRACT

The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Molecular Docking Simulation , COVID-19/virology , Drug Repositioning , Virus Internalization/drug effects , Molecular Dynamics Simulation
11.
Antiviral Res ; 226: 105899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705201

ABSTRACT

We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.


Subject(s)
Antiviral Agents , Molluscum contagiosum virus , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Molluscum contagiosum virus/drug effects , Humans , Virus Replication/drug effects , Molluscum Contagiosum/drug therapy , Oligopeptides/pharmacology , Oligopeptides/chemistry , Animals , Cell Line
12.
Nat Commun ; 15(1): 4181, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755151

ABSTRACT

Biomacromolecule structures are essential for drug development and biocatalysis. Quantum refinement (QR) methods, which employ reliable quantum mechanics (QM) methods in crystallographic refinement, showed promise in improving the structural quality or even correcting the structure of biomacromolecules. However, vast computational costs and complex quantum mechanics/molecular mechanics (QM/MM) setups limit QR applications. Here we incorporate robust machine learning potentials (MLPs) in multiscale ONIOM(QM:MM) schemes to describe the core parts (e.g., drugs/inhibitors), replacing the expensive QM method. Additionally, two levels of MLPs are combined for the first time to overcome MLP limitations. Our unique MLPs+ONIOM-based QR methods achieve QM-level accuracy with significantly higher efficiency. Furthermore, our refinements provide computational evidence for the existence of bonded and nonbonded forms of the Food and Drug Administration (FDA)-approved drug nirmatrelvir in one SARS-CoV-2 main protease structure. This study highlights that powerful MLPs accelerate QRs for reliable protein-drug complexes, promote broader QR applications and provide more atomistic insights into drug development.


Subject(s)
Machine Learning , Quantum Theory , SARS-CoV-2/drug effects , Molecular Dynamics Simulation , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology
13.
Chem Biol Drug Des ; 103(5): e14553, 2024 May.
Article in English | MEDLINE | ID: mdl-38789394

ABSTRACT

Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery. Here we present a primary assessment of antiviral activity of spiro-annulated derivatives of seven-membered heterocycles, oxepane and azepane, in phenotypic assays against viruses with different genomes, virion structures, and genome realization schemes: orthoflavivirus (tick-borne encephalitis virus, TBEV), enteroviruses (poliovirus, enterovirus A71, echovirus 30), adenovirus (human adenovirus C5), hantavirus (Puumala virus). Hit compounds inhibited reproduction of adenovirus C5, the only DNA virus in the studied set, in the yield reduction assay, and did not inhibit reproduction of RNA viruses.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Oxepins/chemistry , Oxepins/pharmacology , Animals , Virus Replication/drug effects , Phenotype
14.
Biomolecules ; 14(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785952

ABSTRACT

Enterovirus 71 (EV71), a typical representative of unenveloped RNA viruses, is the main pathogenic factor responsible for hand, foot, and mouth disease (HFMD) in infants. This disease seriously threatens the health and lives of humans worldwide, especially in the Asia-Pacific region. Numerous animal antimicrobial peptides have been found with protective functions against viruses, bacteria, fungi, parasites, and other pathogens, but there are few studies on the use of scorpion-derived antimicrobial peptides against unenveloped viruses. Here, we investigated the antiviral activities of scorpion venom antimicrobial peptide BmKn2 and five derivatives, finding that BmKn2 and its derivative BmKn2-T5 exhibit a significant inhibitory effect on EV71. Although both peptides exhibit characteristics typical of amphiphilic α-helices in terms of their secondary structure, BmKn2-T5 displayed lower cellular cytotoxicity than BmKn2. BmKn2-T5 was further found to inhibit EV71 in a dose-dependent manner in vitro. Moreover, time-of-drug-addition experiments showed that BmKn2-T5 mainly restricts EV71, but not its virion or replication, at the early stages of the viral cycle. Interestingly, BmKn2-T5 was also found to suppress the replication of the enveloped viruses DENV, ZIKV, and HSV-1 in the early stages of the viral cycle, which suggests they may share a common early infection step with EV71. Together, the results of our study identified that the scorpion-derived antimicrobial peptide BmKn2-T5 showed valuable antiviral properties against EV71 in vitro, but also against other enveloped viruses, making it a potential new candidate therapeutic molecule.


Subject(s)
Antimicrobial Peptides , Antiviral Agents , Enterovirus A, Human , Scorpion Venoms , Virus Replication , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enterovirus A, Human/drug effects , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Animals , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells
15.
J Biomol Struct Dyn ; 42(10): 5402-5414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764132

ABSTRACT

RNA-dependent RNA polymerase (RdRp) is considered a potential drug target for dengue virus (DENV) inhibition and has attracted attention in antiviral drug discovery. Here, we screened 121 natural compounds from Litsea cubeba against DENV RdRp using various approaches of computer-based drug discovery. Notably, we identified four potential compounds (Ushinsunine, Cassameridine, (+)-Epiexcelsin, (-)-Phanostenine) with good binding scores and allosteric interactions with the target protein. Moreover, molecular dynamics simulation studies were done to check the conformational stability of the complexes under given conditions. Additionally, we performed post-simulation analysis to find the stability of potential drugs in the target protein. The findings suggest Litsea cubeba-derived phytomolecules as a therapeutic solution to control DENV infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Dengue Virus , Litsea , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , RNA-Dependent RNA Polymerase , Dengue Virus/drug effects , Dengue Virus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Allosteric Regulation/drug effects , Litsea/chemistry , Protein Binding
16.
Chemosphere ; 358: 142277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719118

ABSTRACT

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Subject(s)
Antiviral Agents , Cobalt , Nanotubes, Carbon , Nitrogen , Peracetic Acid , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Peracetic Acid/chemistry , Catalysis , Antiviral Agents/chemistry , Water Pollutants, Chemical/chemistry , Acyclovir/chemistry , Adsorption
17.
Biochemistry ; 63(10): 1241-1245, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38724483

ABSTRACT

Natural products are important sources of seed compounds for drug discovery. However, it has become difficult in recent years to discover new compounds with valuable pharmacological activities. On the other hand, among the vast number of natural products that have been isolated so far, a considerable number of compounds with specific biological activities are thought to be overlooked in screening that uses biological activity as an index. Therefore, it is conceivable that such overlooked useful compounds may be found by screening compound libraries that have been amassed previously through specific assays. Previously, NPD723, a member of the Natural Products Depository library comprised of a mixture of natural and non-natural products developed at RIKEN, and its metabolite H-006 were found to inhibit growth of various cancer cells at low nanomolar half-maximal inhibitory concentration. Subsequent analysis revealed that H-006 strongly inhibited human dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway. Here, we elucidated the crystal structure of the DHODH-flavin mononucleotide-orotic acid-H-006 complex at 1.7 Å resolution to determine that furocoumavirin, the S-enantiomer of H-006, was the actual inhibitor. The overall mode of interaction of furocoumavirin with the inhibitor binding pocket was similar to that described for previously reported tight-binding inhibitors. However, the structural information together with kinetic characterizations of site-specific mutants identified key unique features that are considered to contribute to the sub-nanomolar inhibition of DHODH by furocoumavirin. Our finding identified new chemical features that could improve the design of human DHODH inhibitors.


Subject(s)
Antiviral Agents , Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Humans , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Crystallography, X-Ray , Furocoumarins/pharmacology , Furocoumarins/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Models, Molecular
18.
BMC Infect Dis ; 24(1): 495, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750422

ABSTRACT

BACKGROUND: In November 2019, the world faced a pandemic called SARS-CoV-2, which became a major threat to humans and continues to be. To overcome this, many plants were explored to find a cure. METHODS: Therefore, this research was planned to screen out the active constituents from Artemisia annua that can work against the viral main protease Mpro as this non-structural protein is responsible for the cleavage of replicating enzymes of the virus. Twenty-five biocompounds belonging to different classes namely alpha-pinene, beta-pinene, carvone, myrtenol, quinic acid, caffeic acid, quercetin, rutin, apigenin, chrysoplenetin, arteannunin b, artemisinin, scopoletin, scoparone, artemisinic acid, deoxyartemisnin, artemetin, casticin, sitogluside, beta-sitosterol, dihydroartemisinin, scopolin, artemether, artemotil, artesunate were selected. Virtual screening of these ligands was carried out against drug target Mpro by CB dock. RESULTS: Quercetin, rutin, casticin, chrysoplenetin, apigenin, artemetin, artesunate, sopolin and sito-gluside were found as hit compounds. Further, ADMET screening was conducted which represented Chrysoplenetin as a lead compound. Azithromycin was used as a standard drug. The interactions were studied by PyMol and visualized in LigPlot. Furthermore, the RMSD graph shows fluctuations at various points at the start of simulation in Top1 (Azithromycin) complex system due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points resulting in increased RMSD with a time frame of 50 ns. But this change remains stable after the extension of simulation time intervals till 100 ns. On other side, the Top2 complex system remains highly stable throughout the time scale. No such structural dynamics were observed bu the ligand attached to the active site residues binds strongly. CONCLUSION: This study facilitates researchers to develop and discover more effective and specific therapeutic agents against SARS-CoV-2 and other viral infections. Finally, chrysoplenetin was identified as a more potent drug candidate to act against the viral main protease, which in the future can be helpful.


Subject(s)
Artemisia annua , Coronavirus 3C Proteases , Molecular Docking Simulation , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Artemisia annua/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19/virology , Molecular Dynamics Simulation
19.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38710482

ABSTRACT

MOTIVATION: Despite the extensive manufacturing of antiviral drugs and vaccination, viral infections continue to be a major human ailment. Antiviral peptides (AVPs) have emerged as potential candidates in the pursuit of novel antiviral drugs. These peptides show vigorous antiviral activity against a diverse range of viruses by targeting different phases of the viral life cycle. Therefore, the accurate prediction of AVPs is an essential yet challenging task. Lately, many machine learning-based approaches have developed for this purpose; however, their limited capabilities in terms of feature engineering, accuracy, and generalization make these methods restricted. RESULTS: In the present study, we aim to develop an efficient machine learning-based approach for the identification of AVPs, referred to as DeepAVP-TPPred, to address the aforementioned problems. First, we extract two new transformed feature sets using our designed image-based feature extraction algorithms and integrate them with an evolutionary information-based feature. Next, these feature sets were optimized using a novel feature selection approach called binary tree growth Algorithm. Finally, the optimal feature space from the training dataset was fed to the deep neural network to build the final classification model. The proposed model DeepAVP-TPPred was tested using stringent 5-fold cross-validation and two independent dataset testing methods, which achieved the maximum performance and showed enhanced efficiency over existing predictors in terms of both accuracy and generalization capabilities. AVAILABILITY AND IMPLEMENTATION: https://github.com/MateeullahKhan/DeepAVP-TPPred.


Subject(s)
Algorithms , Antiviral Agents , Machine Learning , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptides/chemistry , Humans , Computational Biology/methods , Neural Networks, Computer
20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732134

ABSTRACT

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...