Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.033
Filter
1.
Fitoterapia ; 175: 105955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604259

ABSTRACT

Brucea javanica, a valued traditional medicinal plant in Malaysia, known for its fever-treating properties yet remains underexplored for its potential antiviral properties against dengue. This study aims to simultaneously identify chemical classes and metabolites within B. javanica using molecular networking (MN), by Global Natural Product Social (GNPS), and SIRIUS in silico annotation. Liquid chromatography-mass spectrometry (LC-MS2)-based MN explores chemical diversity across four plant parts (leaves, roots, fruits, and stem bark), revealing diverse metabolites such as tryptophan-derived alkaloids, terpenoids, and octadecadenoids. Simultaneous LC-MS2 and MN analyses reveal a discriminative capacity for individual plant components, with roots accumulating tryptophan alkaloids, fruits concentrating quassinoids, leaves containing fusidanes, and stem bark primarily characterised by simple indoles. Subsequently, extracts were evaluated for dengue antiviral activity using adenosine triphosphate (ATP) and plaque assays, indicates potent efficacy in the dichloromethane (DCM) extract from roots (EC50 = 0.3 µg/mL, SI = 10). Molecular docking analysis of two major compounds; canthin-6-one (264) and 1-hydroxy-11-methoxycanthin-6-one (275) showed potential binding interactions with active sites of NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) protein. Subsequent in vitro evaluation revealed compounds 264 and 275 had a promising dengue antiviral activity with SI value of 63 and 1.85. These identified metabolites emerge as potential candidates for further evaluation in dengue antiviral activities.


Subject(s)
Antiviral Agents , Brucea , Dengue Virus , Molecular Docking Simulation , Phytochemicals , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Brucea/chemistry , Malaysia , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Leaves/chemistry , Plant Bark/chemistry , Mass Spectrometry , Fruit/chemistry , Plants, Medicinal/chemistry , Network Pharmacology
2.
J Org Chem ; 89(9): 5977-5987, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38557022

ABSTRACT

Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).


Subject(s)
Alkaloids , Dopamine , Urochordata , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemical synthesis , Urochordata/chemistry , Mice , Dopamine/chemistry , Dopamine/pharmacology , Molecular Structure , Guanidine/chemistry , Guanidine/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , SARS-CoV-2/drug effects , Humans
3.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38579352

ABSTRACT

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Subject(s)
Antiviral Agents , Isoflavones , Millettia , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Millettia/chemistry , Molecular Structure , Humans , Rotenone/pharmacology , Rotenone/chemistry , Rotenone/analogs & derivatives , Plant Leaves/chemistry , Plant Roots/chemistry , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Viruses/drug effects
4.
Bioorg Chem ; 147: 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604017

ABSTRACT

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Subject(s)
Ascomycota , Coronavirus 3C Proteases , Polyketides , SARS-CoV-2 , Terpenes , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Ascomycota/chemistry , Humans , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Structure-Activity Relationship , COVID-19 Drug Treatment , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
5.
Microb Cell Fact ; 23(1): 117, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644470

ABSTRACT

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.


Subject(s)
Antiviral Agents , Cyanobacteria , Polysaccharides, Bacterial , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Cyanobacteria/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/biosynthesis , Animals , Humans , Spectroscopy, Fourier Transform Infrared , Chlorocebus aethiops
6.
J Nat Prod ; 87(4): 1059-1066, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38561238

ABSTRACT

Seven new sugar alcohol-conjugated acyclic sesquiterpenes, acremosides A-G (1-7), were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. The structures were determined by comprehensive analyses of 1D and 2D NMR spectroscopic data. The relative configurations were established by J-based configuration analysis and acetonide derivatization. The absolute configurations were elucidated by the Mosher ester method and ECD calculations. The structures of acremosides E-G (5-7) featured the linear sesquiterpene skeleton with a tetrahydrofuran moiety attached to a sugar alcohol. Acremosides A (1) and C-E (3-5) showed significant inhibitory activities against hepatitis C virus (EC50 values of 4.8-8.8 µM) with no cytotoxicity (CC50 of >200 µM).


Subject(s)
Acremonium , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Animals , Molecular Structure , Acremonium/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Porifera/chemistry , Hepacivirus/drug effects , Humans , Pseudomonas aeruginosa/drug effects
7.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38457082

ABSTRACT

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Subject(s)
Antiviral Agents , Glycosides , Ipomoea , Resins, Plant , Seeds , Ipomoea/chemistry , Seeds/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Resins, Plant/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Molecular Structure , Herpesvirus 1, Human/drug effects , HL-60 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
8.
J Antibiot (Tokyo) ; 77(6): 389-392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519549

ABSTRACT

Okichromanone (1), a new chromanone, was isolated from the culture extract of a sponge-derived actinomycete Microbispora, along with known 1-hydroxyphenazine (2). Compound 1 was elucidated to exist as a mixture of two isomeric structures (1a and 1b) at a ratio of nearly 3:2. Compounds 1 and 2 showed anti HSV-I activity with IC50 values 40 and 86 µM, respectively, and anti HSV-II activity with IC50 values 59 and 123 µM, respectively.


Subject(s)
Actinobacteria , Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/chemistry , Actinobacteria/chemistry , Animals , Porifera , Chromones/pharmacology , Chromones/chemistry , Chromones/isolation & purification , Chlorocebus aethiops , Vero Cells , Herpesvirus 1, Human/drug effects , Inhibitory Concentration 50 , Molecular Structure
9.
Phytomedicine ; 110: 154650, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36649670

ABSTRACT

BACKGROUND: Dengue caused by dengue virus (DENV) spreads rapidly around the world. However, there are no worldwide licensed vaccines or specific antivirals to combat DENV infection. Quassinoids are the most characteristic components of Eurycoma longifolia, which have been reported to display a variety of biological activities. However, whether quassinoids exert anti-DENV activities remains unknown. PURPOSE: To test the quassinoids of E. longifolia for their activity against DENV and to clarify the potential mechanisms. METHODS: The quassinoids from E. longifolia were isolated by chromatography techniques, and their chemical structures were elucidated by spectroscopic analysis. The anti-DENV activities of quassinoids on baby hamster kidney cells BHK-21 were determined by lactate dehydrogenase (LDH) assay. The synthesis of progeny virus was measured by plaque assay. The expression levels of envelope protein (E) and non-structural protein 1 (NS1) were evaluated by qRT-PCR, Western blot and immunofluorescence assays. Molecular docking was used to screen the potential targets of the most active quassinoid against DENV-2, and surface plasmon resonance analysis was employed to confirm the direct binding between the most active quassinoid and potential target. RESULTS: Twenty-four quassinoids, including three new quassinoids (1 - 3), were isolated from the ethanol extract of E. longifolia. Quassinoids 4, 5, 9, 11, 12, 15, 16, 17, 19 and 20 significantly reduced the LDH release at the stages of viral binding and entry or intracellular replication. Among them, 19 (6α-hydroxyeurycomalactone, 6α-HEL) exhibited the best anti-DENV-2 activities with an EC50 value of 0.39 ± 0.02 µM. Further experiments suggested that 6α-HEL remarkably inhibited progeny virus synthesis and mRNA and protein expression levels of E and NS1 of DENV-2. Time-of-drug-addition assay suggested that 6α-HEL inhibited intracellular replication of DENV-2 at an early stage. Moreover, 6α-HEL was shown to interact with NS5-RdRp domain at a binding affinity of -8.15 kcal/mol. SPR assay further verified 6α-HEL bound to RdRp protein with an equilibrium dissociation constant of 1.49 × 10-7 M. CONCLUSION: Ten quassinoids from E. longifolia showed anti-DENV activities at processes of virus binding and entry or intracellular replication. The most active quassinoid 6α-HEL exerts the anti-DENV-2 activities at intracellular replication stage by directly targeting the NS5-RdRp protein. These results suggest that 6α-HEL could be a promising candidate for the treatment of DENV-2 infection.


Subject(s)
Antiviral Agents , Dengue Virus , Eurycoma , Quassins , Virus Replication , Animals , Cricetinae , Humans , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Dengue/drug therapy , Eurycoma/chemistry , Molecular Docking Simulation , Quassins/isolation & purification , Quassins/pharmacology , RNA-Dependent RNA Polymerase , Virus Replication/drug effects , Dengue Virus/drug effects
10.
Mar Drugs ; 20(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36547933

ABSTRACT

A global health concern has emerged as a response to the recent SARS-CoV-2 pandemic. The identification and inhibition of drug targets of SARS-CoV-2 is a decisive obligation of scientists. In addition to the cell entry mechanism, SARS-CoV-2 expresses a complicated replication mechanism that provides excellent drug targets. Papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro) play a vital role in polyprotein processing, producing functional non-structural proteins essential for viral replication and survival in the host cell. Moreover, PLpro is employed by SARS-CoV-2 for reversing host immune responses. Therefore, if some particular compound has the potential to interfere with the proteolytic activities of 3CLpro and PLpro of SARS-CoV-2, it may be effective as a treatment or prophylaxis for COVID-19, reducing viral load, and reinstating innate immune responses. Thus, the present study aims to inhibit SARS-CoV-2 through 3CLpro and PLpro using marine natural products isolated from marine algae that contain numerous beneficial biological activities. Molecular docking analysis was utilized in the present study for the initial screening of selected natural products depending on their 3CLpro and PLpro structures. Based on this approach, Ishophloroglucin A (IPA), Dieckol, Eckmaxol, and Diphlorethohydroxycarmalol (DPHC) were isolated and used to perform in vitro evaluations. IPA presented remarkable inhibitory activity against interesting drug targets. Moreover, Dieckol, Eckmaxol, and DPHC also expressed significant potential as inhibitors. Finally, the results of the present study confirm the potential of IPA, Dieckol, Eckmaxol, and DPHC as inhibitors of SARS-CoV-2. To the best of our knowledge, this is the first study that assesses the use of marine natural products as a multifactorial approach against 3CLpro and PLpro of SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 , Polyphenols , SARS-CoV-2 , Virus Replication , Humans , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , COVID-19/prevention & control , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Polyphenols/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology
11.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36346918

ABSTRACT

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Subject(s)
Alternaria , Anti-Inflammatory Agents , Antiviral Agents , Atriplex , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Perylene , Plants, Medicinal , Quinones , Humans , Alternaria/chemistry , Alternaria/isolation & purification , Atriplex/microbiology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Molecular Structure , Perylene/chemistry , Perylene/isolation & purification , Perylene/pharmacology , Plants, Medicinal/microbiology , Quinones/chemistry , Quinones/isolation & purification , Quinones/pharmacology , Tenuazonic Acid/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology
12.
J Nat Prod ; 85(9): 2135-2141, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36075014

ABSTRACT

The leaf extract of Suregada zanzibariensis gave two new modified ent-abietane diterpenoids, zanzibariolides A (1) and B (2), and two known triterpenoids, simiarenol (3) and ß-amyrin (4). The structures of the isolated compounds were elucidated based on NMR and MS data analysis. Single-crystal X-ray diffraction was used to establish the absolute configurations of compounds 1 and 2. The crude leaf extract inhibited the infectivity of herpes simplex virus 2 (HSV-2, IC50 11.5 µg/mL) and showed toxicity on African green monkey kidney (GMK AH1) cells at CC50 52 µg/mL. The isolated compounds 1-3 showed no anti-HSV-2 activity and exhibited insignificant toxicity against GMK AH1 cells at ≥100 µM.


Subject(s)
Abietanes , Antiviral Agents , Suregada , Triterpenes , Abietanes/chemistry , Abietanes/isolation & purification , Abietanes/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Chlorocebus aethiops , Herpesvirus 2, Human/drug effects , Molecular Structure , Plant Extracts/chemistry , Suregada/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
13.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268642

ABSTRACT

Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Brazil , COVID-19/virology , HIV-1/drug effects , Hepatitis A virus/drug effects , Herpesvirus 1, Human/drug effects , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
14.
Mar Drugs ; 20(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35323462

ABSTRACT

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Indole Alkaloids/chemistry , Piperazines/chemistry , SARS-CoV-2/enzymology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antiviral Agents/isolation & purification , Aspergillus fumigatus/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Indole Alkaloids/isolation & purification , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperazines/isolation & purification
15.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323478

ABSTRACT

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Subject(s)
Antiviral Agents/pharmacology , Chromones/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/isolation & purification , Aspergillus niger/chemistry , Chlorocebus aethiops , Chromones/isolation & purification , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , Protease Inhibitors/isolation & purification , RNA Helicases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
16.
Pharm Biol ; 60(1): 509-524, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35234563

ABSTRACT

CONTEXT: Since the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy. OBJECTIVE: Most of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties. METHODS: We searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action. RESULTS: Various classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials. DISCUSSION AND CONCLUSIONS: The synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 Drug Treatment , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/isolation & purification , Biological Products/isolation & purification , COVID-19/virology , Drug Development/methods , Drug Synergism , Humans , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/isolation & purification , Immunomodulating Agents/pharmacology
17.
Mar Drugs ; 20(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35200645

ABSTRACT

Herpes simplex virus 1 (HSV-1) remains a prominent health concern widespread all over the world. The increasing genital infections by HSV-1 that might facilitate acquisition and transmission of HIV-1, the cumulative evidence that HSV-1 promotes neurodegenerative disorders, and the emergence of drug resistance signify the need for new antiviral agents. In this study, the in vitro anti-herpetic activity of sulfated polysaccharides (SPs) extracted by enzyme or hot water from seaweeds collected in France and Mexico from stranding events, were evaluated. The anti-herpetic activity evaluation of the semi-refined-polysaccharides (sr-SPs) and different ion exchange purified fractions showed a wide range of antiviral activity. Among them, the sr-SPs from the Rhodophyta Halymenia floresii showed stronger activity EC50 0.68 µg/mL with SI 1470, without cytotoxicity. Further, the antiviral activity of the sr-SPs evaluated at different treatment schemes showed a high EC50 of 0.38 µg/mL during the viral adsorption assays when the polysaccharide and the virus were added simultaneously, whilst the protection on Vero cell during the post-infection assay was effective up to 1 h. The chemical composition, FTIR and 1H NMR spectroscopic, and molecular weights of the sr-SPs from H. floresii were determined and discussed based on the anti-herpetic activity. The potential utilization of seaweed stranding as a source of antiviral compounds is addressed.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Seaweed/chemistry , Animals , Antiviral Agents/isolation & purification , Chlorocebus aethiops , France , Mexico , Molecular Weight , Polysaccharides/isolation & purification , Sulfates , Vero Cells
18.
Mar Drugs ; 20(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35200660

ABSTRACT

Human noroviruses are the most common pathogens causing acute gastroenteritis and may lead to more severe illnesses among immunosuppressed people, including elderly and organ transplant recipients. To date, there are no safe and effective vaccines or antiviral agents for norovirus infections. In the present study, we aimed to demonstrate the antiviral activity of monogalactosyl diacylglyceride (MGDG) isolated from a microalga, Coccomyxa sp. KJ, against murine norovirus (MNV) and feline calicivirus (FCV), the surrogates for human norovirus. MGDG showed virucidal activities against these viruses in a dose- and time-dependent manner-MGDG at 100 µg/mL reduced the infectivity of MNV and FCV to approximately 10% after 60 min incubation. In the animal experiments of MNV infection, intraoral administration of MGDG (1 mg/day) exerted a therapeutic effect by suppressing viral shedding in the feces and produced high neutralizing antibody titers in sera and feces. When MGDG was orally administered to immunocompromised mice treated with 5-fluorouracil, the compound exhibited earlier stopping of viral shedding and higher neutralizing antibody titers of sera than those in the control mice administered with distilled water. Thus, MGDG may offer a new therapeutic and prophylactic alternative against norovirus infections.


Subject(s)
Antiviral Agents/pharmacology , Caliciviridae Infections/drug therapy , Galactolipids/pharmacology , Microalgae/metabolism , Animals , Antibodies, Neutralizing/blood , Antiviral Agents/administration & dosage , Antiviral Agents/isolation & purification , Caliciviridae Infections/virology , Calicivirus, Feline/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Galactolipids/administration & dosage , Galactolipids/isolation & purification , Mice , Mice, Inbred BALB C , Norovirus/drug effects , Time Factors , Virus Shedding/drug effects
19.
Bioengineered ; 13(3): 5480-5508, 2022 03.
Article in English | MEDLINE | ID: mdl-35184680

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) caused by the SARS-coronavirus 2(SARS-CoV-2) virus has become the greatest global public health crisis in recent years,and the COVID-19 epidemic is still continuing. However, due to the lack of effectivetherapeutic drugs, the treatment of corona viruses is facing huge challenges. In thiscontext, countries with a tradition of using herbal medicine such as China have beenwidely using herbal medicine for prevention and nonspecific treatment of corona virusesand achieved good responses. In this review, we will introduce the application of herbalmedicine in the treatment of corona virus patients in China and other countries, andreview the progress of related molecular mechanisms and antiviral activity ingredients ofherbal medicine, in order to provide a reference for herbal medicine in the treatment ofcorona viruses. We found that herbal medicines are used in the prevention and fightagainst COVID-19 in countries on all continents. In China, herbal medicine has beenreported to relieve some of the clinical symptoms of mild patients and shorten the length of hospital stay. However, as most herbal medicines for the clinical treatment of COVID-19still lack rigorous clinical trials, the clinical and economic value of herbal medicines in theprevention and treatment of COVID-19 has not been fully evaluated. Future work basedon large-scale randomized, double-blind clinical trials to evaluate herbal medicines andtheir active ingredients in the treatment of new COVID-19 will be very meaningful.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/isolation & purification , COVID-19/pathology , COVID-19/virology , China , Drugs, Chinese Herbal/isolation & purification , Herbal Medicine/methods , Humans , Medicine, Chinese Traditional/methods , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity
20.
Article in English | MEDLINE | ID: mdl-35007897

ABSTRACT

Yellow catfish (Pelteobagrus fulvidraco) is commonly contaminated by protease inhibitors because of the illegal use of antiviral drugs in aquaculture, so the determination of antiviral drugs is essential in food safety supervision. In this study, a novel sorbent, graphene and silica nanospheres composite (G/KCC-1), was synthesized for pipette-tip-based solid-phase extraction (PT-SPE) and purification of ritonavir, saquinavir, and indinavir in yellow catfish, followed by ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) analysis. The wrinkly structure of G/KCC-1 with center-radial nanowrinkles enlarged the surface area and increased the capacity of absorbing the target analyte. With the proposed G/KCC-1 based PT-SPE UPLC-MS/MS method, the pH of sample solution, aspirating/dispensing cycles for extraction and elution were optimized to be 4.0, 25, and 10 respectively, and the eluting solvent was methanol/ammonia (95:5, v/v) with 0.02 M sodium chloride. This new method was further validated to be linear (correlation coefficient R2, 0.9993-0.9996), sensitive (limit of detection, LOD ≤ 0.8 ng mL-1), accurate (89.3-114.2%), and precise (relative standard deviation, RSD ≤ 6.23%). These results indicated that the proposed method is qualified in bioanalytical method validation and meets the requirements for detecting illegally used antiviral drugs in yellow catfish. The demonstrated G/KCC-1 based PT-SPE UPLC-MS/MS method is a potential analytical method in food and drug administration.


Subject(s)
Antiviral Agents/analysis , Catfishes , Chromatography, High Pressure Liquid/methods , Nanospheres/chemistry , Solid Phase Extraction/methods , Animals , Antiviral Agents/isolation & purification , Aquaculture , Graphite/chemistry , Limit of Detection , Linear Models , Reproducibility of Results , Silicon Dioxide/chemistry , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...