Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.564
Filter
1.
BMC Genomics ; 25(1): 454, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720264

ABSTRACT

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Subject(s)
Anura , Hibernation , Metabolomics , Muscle, Skeletal , Animals , Hibernation/genetics , Hibernation/physiology , Muscle, Skeletal/metabolism , Anura/genetics , Anura/metabolism , Anura/physiology , Myocardium/metabolism , Transcriptome , Gene Expression Profiling , Seasons , Metabolome , Tibet
2.
Sci Rep ; 14(1): 10137, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698108

ABSTRACT

Gut microbiota impact host physiology, though simultaneous investigations in ectothermic vertebrates are rare. Particularly, amphibians may exhibit more complex interactions between host physiology and the effects of gut microbiota due to the combination of seasonal changes and complex life histories. In this study, we assessed the relationships among food resources, gut bacterial communities, and host physiology in frogs (Phelophylax nigromaculatus), taking into account seasonal and life history variations. We found that food sources were not correlated with physiological parameters but had some relationships with the gut bacterial community. Variations in gut bacterial community and host physiology were influenced by the combined effects of seasonal differences and life history, though mostly driven by seasonal differences. An increase in Firmicutes was associated with higher fat content, reflecting potential fat storage in frogs during the non-breeding season. The increase in Bacteroidetes resulted in lower fat content in adult frogs and decreased immunity in juvenile frogs during the breeding season, demonstrating a direct link. Our results suggest that the gut microbiome may act as a link between food conditions and physiological status, and that the combined effect of seasons and life history could reinforce the relationship between gut microbiota and physiological status in ectothermic animals. While food sources may influence the gut microbiota of ectotherms, we contend that temperature-correlated seasonal variation, which predominately influences most ectotherms, is a significant factor.


Subject(s)
Anura , Gastrointestinal Microbiome , Seasons , Animals , Gastrointestinal Microbiome/physiology , Anura/physiology , Anura/microbiology , Bacteria , Bacteroidetes
3.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38805603

ABSTRACT

Context Aubria subsigillata is such a highly valued, edible species for the citizens of Benin that over exploitation has led to a rarefaction of wild populations. Aims The aim of captive breeding is to develop breeding protocols and farming practices for the species which will reduce hunting pressure on wild populations. Methods The methodology consisted of determining the concentration of ovulatory hormone and its method of injection into the breeding stock, followed by in vitro fertilisation of the unfertilised eggs of the females by the spermic urine of the males to determine the optimum injection method, hormone concentration for ovulation and sperm collections, and the development of in vitro fertilisation protocols using gametes obtained via the aforementioned methodologies. Key results Results indicated that 0.2IU/g concentration of gonadotropin-releasing hormone agonist administered intrafemorally enabled spontaneous release of spermic urine and ova in the breeding animals. The latency time between injection and collection of gametes was 13h in males and 27h in females at a temperature of 28.5°C. Females laid an average of 172 eggs weighing 1mg mass. Conclusions Aubria subsigillata is a frog that reproduces using stimuli (hormone), and in vitro fertilisation resulted in a high rate of fertilised eggs. Implications Artifical reproduction in A. subsigillata is carried out in five phases: (1) selection of mature broodstock; (2) hormonal injection; (3) gamete collection; (4) in vitro fertilisation; and (5) incubation. However, work should continue on improving the egg hatching rate.


Subject(s)
Aquaculture , Fertilization in Vitro , Gonadotropin-Releasing Hormone , Animals , Female , Male , Benin , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Anura/physiology , Reproduction/physiology , Breeding/methods , Spermatozoa/physiology
4.
Curr Biol ; 34(10): R492-R493, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38772334

ABSTRACT

Blackburn et al. show using CT-scanning that the only previously reported "lungless" frog retains a glottis and lungs.


Subject(s)
Glottis , Lung , Animals , Lung/physiology , Lung/diagnostic imaging , Glottis/physiology , Glottis/anatomy & histology , Glottis/diagnostic imaging , Anura/physiology , Anura/anatomy & histology , Tomography, X-Ray Computed
5.
Ecol Evol Physiol ; 97(2): 71-80, 2024.
Article in English | MEDLINE | ID: mdl-38728690

ABSTRACT

AbstractLocomotion is essential for survival, but it requires resources such as energy and metabolites and therefore may conflict with other physiological processes that also demand resources, particularly expensive processes such as immunological responses. This possible trade-off may impose limits on either the magnitude of immune responses or the patterns of activity and performance. Previous studies have shown that invasive species may have a depressed immune response, allowing them to maintain locomotor function and reproduction even when sick. This may contribute to the ecological success of invasive species in colonization and dispersal. In contrast, noninvasive species tend to reduce activity as a response to infection. Here, we studied the impact of a simulated infection on locomotor performance and voluntary movement in the anurans Xenopus laevis (a globally invasive species) and Xenopus allofraseri (a noninvasive congeneric). We found that a simulated infection reduces locomotor performance in both species, with an accentuated effect on X. allofraseri. Voluntary movement was marginally different between species. Our data suggest that a simulated infection leads to behavioral depression and reduced locomotor performance in anurans and show that this effect is limited in the invasive X. laevis. Contrasting responses to an immune challenge have been reported in the few amphibian taxa analyzed to date and suggest relationships between ecology and immunology that deserve further investigation. Specifically, a depressed immune response may underlie a propension to invasion in some species. Whether this is a general trend for invasive species remains to be tested, but our data add to the growing body of work documenting depressed immune systems in invasive species.


Subject(s)
Introduced Species , Locomotion , Xenopus laevis , Animals , Locomotion/physiology , Female , Male , Species Specificity , Anura/immunology
6.
Ecol Lett ; 27(5): e14431, 2024 May.
Article in English | MEDLINE | ID: mdl-38712705

ABSTRACT

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Subject(s)
Batrachochytrium , Host-Pathogen Interactions , Animals , Batrachochytrium/genetics , Batrachochytrium/physiology , Anura/microbiology , Amphibians/microbiology , Mycoses/veterinary , Mycoses/microbiology , Adaptation, Physiological , Phylogeny
7.
Aquat Toxicol ; 271: 106926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713993

ABSTRACT

Worldwide, the indiscriminate and escalating application of pesticides has led to extensive impacts on both the environment and non-target organisms. Phytoremediation, which employs plants to decontaminate environments, is a potential strategy for the mitigation of this damage. The present study assessed the phytoremedial potential of Salvinia auriculata, an aquatic macrophyte known to be effective for the removal of environmental contaminants. In the laboratory, Dendropsophus minutus tadpoles were exposed to different concentrations (0.035, 0.1, 1.0, and 1.5 mg/l) of the commercial insecticide Fipronil 800wg in two treatments - (i) simple exposure for 96 h, and (ii) exposure for 168 h in aquariums containing S. auriculata. In the first experiment, a mortality rate of 33.3 % was recorded at the highest Fipronil concentration (1.5 mg/l), and genotoxic parameters increased at all concentrations except 0.035 mg/L, in comparison with the control. In the second experiment, phytoremediation occurred at all the concentrations tested, with lower frequencies of cells with micronuclei, and binucleated, anucleated, and pyknotic nuclei being observed, in comparison with the first experiment. These findings highlight the potential effectiveness of S. auriculata for the phytoremediation of environments contaminated by pesticides and contribute to the understanding of the benefits of this approach for the protection and preservation of aquatic biodiversity.


Subject(s)
Biodegradation, Environmental , Insecticides , Larva , Pyrazoles , Water Pollutants, Chemical , Animals , Larva/drug effects , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Anura/physiology
8.
PLoS One ; 19(5): e0302728, 2024.
Article in English | MEDLINE | ID: mdl-38696517

ABSTRACT

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles' mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.


Subject(s)
Cues , Larva , Predatory Behavior , Animals , Larva/physiology , Predatory Behavior/physiology , Anura/physiology , Olfactory Receptor Neurons/physiology , Astacoidea/physiology
9.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790242

ABSTRACT

Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity--resource polyphenism--in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve.


Subject(s)
Adaptation, Physiological , Anura , Genome-Wide Association Study , Phenotype , Quantitative Trait Loci , Animals , Anura/genetics , Genome-Wide Association Study/methods , Adaptation, Physiological/genetics , Larva/genetics , Larva/growth & development , Genetic Variation
10.
Commun Biol ; 7(1): 638, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796601

ABSTRACT

In order to cope with the complexity and variability of the terrestrial environment, amphibians have developed a wide range of reproductive and parental behaviors. Nest building occurs in some anuran species as parental care. Species of the Music frog genus Nidirana are known for their unique courtship behavior and mud nesting in several congeners. However, the evolution of these frogs and their nidification behavior has yet to be studied. With phylogenomic and phylogeographic analyses based on a wide sampling of the genus, we find that Nidirana originated from central-southwestern China and the nidification behavior initially evolved at ca 19.3 Ma but subsequently lost in several descendants. Further population genomic analyses suggest that the nidification species have an older diversification and colonization history, while N. adenopleura complex congeners that do not exhibit nidification behavior have experienced a recent rapid radiation. The presence and loss of the nidification behavior in the Music frogs may be associated with paleoclimatic factors such as temperature and precipitation. This study highlights the nidification behavior as a key evolutionary innovation that has contributed to the diversification of an amphibian group under past climate changes.


Subject(s)
Anura , Phylogeny , Animals , Anura/physiology , Anura/genetics , China , Phylogeography , Climate Change , Biological Evolution , Nesting Behavior
11.
Sci Total Environ ; 933: 173174, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740213

ABSTRACT

Amphibians are the most threatened group of vertebrates because they have certain biological and ecological characteristics that make them sensitive to environmental changes. The aim of this study was to evaluate the health status of field-collected adult frogs of Leptodactylus luctator (Amphibia, Anura) living in sites with different anthropogenic disturbances (florihorticulture, petrochemical industry and sewage discharges) and a reference site without any detectable influence of such activities. To this end, a battery of 21 biomarkers (hematological, biochemical and individual biomarkers) was studied using a multivariate approach that allows us to evaluate the relationship between them and provide information on their usefulness. The frogs at the florihorticulture, petrochemical and sewage discharges sites exhibited several biomarkers far from homeostasis. In addition, we identified 11 of 21 biomarkers that were useful indicators of the health status of the frogs and allowed discrimination between study sites in the following order: lymphocytes (98 %), neutrophils (45 %), hemoglobin (42 %), monocytes (41 %), fat body index (35 %), eosinophils (35 %), hepatosomatic index (33 %), mean corpuscular hemoglobin (32 %), thrombocytes (27 %), catalase in liver (26 %), and GST in liver (26 %). The results suggest that hematological biomarkers contribute the most to site separation, whereas biochemical biomarkers contribute the least. The integral interpretation of the results also allowed us to diagnose the different health status of L. luctator: The frogs from the petrochemical industry were the most negatively affected, followed by the frogs from the sewages discharges and finally the frogs from the florihorticulture and reference sites. This is the first field study with anurans in which so many biomarkers were examined.


Subject(s)
Anura , Biomarkers , Environmental Monitoring , Animals , Environmental Monitoring/methods , Anura/physiology , Ecosystem , Health Status
12.
J Therm Biol ; 121: 103851, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615494

ABSTRACT

The relationship between temperature and performance can be illustrated through a thermal performance curve (TPC), which has proven useful in describing various aspects of ectotherms' thermal ecology and evolution. The parameters of the TPC can vary geographically due to large-scale variations in environmental conditions. However, only some studies have attempted to quantify how thermal performance varies over relatively small spatial scales, even in the same location or consistently among individuals within a species. Here, we quantified individual and species variation in thermal sensitivity of locomotor performance in five amphibia Eupsophus species found in the temperate rainforests of southern Chile and compared their estimates against co-occurring species that exhibit a substantially more extensive distributional range. We measured critical thermal limits and jumping performance under five different temperatures. Our results suggest that thermal responses are relatively conserved along the phylogeny, as the locomotor performance and thermal windows for activity remained narrow in Eupsophus species when compared against results observed for Batrachyla taeniata and Rhinella spinulosa. Additionally, we found significant individual differences in locomotor performance within most species, with individual consistency in performance observed across varied temperatures. Further analyses explored the influence of body size on locomotor performance and critical thermal limits within and between species. Our results suggest a trade-off scenario between thermal tolerance breadth and locomotor performance, where species exhibiting broader thermal ranges might have compromised performance. Interestingly, these traits seem partly mediated by body size variations, raising questions about potential ecological implications.


Subject(s)
Anura , Animals , Chile , Anura/physiology , Locomotion , Species Specificity , Temperature , Thermotolerance , Body Size , Phylogeny
13.
Sci Total Environ ; 930: 172526, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38636866

ABSTRACT

Pesticide contamination poses a significant threat to non-target wildlife, including amphibians, many of which are already highly threatened. This study assessed the extent of pesticide exposure in dead frogs collected during a mass mortality event across eastern New South Wales, Australia between July 2021 and March 2022. Liver tissue from 77 individual frogs of six species were analysed for >600 legacy and contemporary pesticides, including rodenticides. More than a third (36 %) of the liver samples contained at least one of the following pesticides: brodifacoum, dieldrin, DDE, heptachlor/heptachlor epoxide, fipronil sulfone, and 2-methyl-4-chlorophenoxyacetic acid (MCPA). Brodifacoum, a second-generation anticoagulant rodenticide, was found in four of the six frog species analysed: the eastern banjo frog (Limnodynastes dumerilii), cane toad (Rhinella marina), green tree frog (Litoria caerulea) and Peron's tree frog (Litoria peronii). This is the first report of anticoagulant rodenticide detected in wild amphibians, raising concerns about potential impacts on frogs and extending the list of taxa shown to accumulate rodenticides. Dieldrin, a banned legacy pesticide, was also detected in two species: striped marsh frog (Limnodynastes peronii) and green tree frog (Litoria caerulea). The toxicological effects of these pesticides on frogs are difficult to infer due to limited comparable studies; however, due to the low frequency of detection the presence of these pesticides was not considered a major contributing factor to the mass mortality event. Additional research is needed to investigate the effects of pesticide exposure on amphibians, particularly regarding the impacts of second-generation anticoagulant rodenticides. There is also need for continued monitoring and improved conservation management strategies for the mitigation of the potential threat of pesticide exposure and accumulation in amphibian populations.


Subject(s)
Anticoagulants , Anura , Environmental Monitoring , Pesticides , Rodenticides , Animals , Rodenticides/analysis , Anticoagulants/analysis , New South Wales , Australia
14.
Trends Ecol Evol ; 39(5): 421-423, 2024 May.
Article in English | MEDLINE | ID: mdl-38599935

ABSTRACT

Despite the great diversity of parental care types found in amphibians, studies linking them to post-copulatory sexually selected traits are scarce, presumably due to a lack of data. Valencia-Aguilar et al. used fieldwork and museum collections to show that paternal care appears to trade-off with testes size in glass frogs.


Subject(s)
Testis , Animals , Testis/anatomy & histology , Male , Paternal Behavior , Organ Size , Anura/anatomy & histology , Anura/physiology
15.
Chemosphere ; 357: 141978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608774

ABSTRACT

Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.


Subject(s)
Salinity , Animals , Climate Change , Ecosystem , Water Pollutants, Chemical/toxicity , Temperature , Anura/physiology , Stress, Physiological , Ponds , Sodium Chloride/toxicity
16.
Mol Ecol ; 33(9): e17358, 2024 May.
Article in English | MEDLINE | ID: mdl-38625740

ABSTRACT

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Subject(s)
Animals, Poisonous , Batrachotoxins , Songbirds , Animals , Batrachotoxins/genetics , Neurotoxins/toxicity , Neurotoxins/genetics , Passeriformes/genetics , Anura/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Amino Acid Substitution , Poison Frogs
17.
J Therm Biol ; 121: 103854, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657317

ABSTRACT

Amphibian diversity is most prominent in the warm and humid tropical and subtropical regions across the globe. Nonetheless, amphibians also inhabit high-altitude tropical mountains and regions at medium and high latitudes, exposing them to subzero temperatures and requiring behavioural or physiological adaptations to endure freezing events. While freeze tolerance has been predominantly reported in high-latitude zones where species endure prolonged freezing (several weeks or months), less is known about mid-latitudes amphibians exposed to occasional subzero temperatures. In this study, we employed a controlled ecological protocol, subjecting three frog species from the Iberian Peninsula (Rana parvipalmata, Epidalea calamita, and Pelobates cultripes) to a 2-h exposure to temperatures of -2 °C to investigate the accumulation of urea and glucose as physiological mechanisms associated with survival at freezing temperatures. Our results revealed a moderate response in the production of cryoprotectant metabolites under experimental freezing conditions, particularly urea, with notable findings in R. parvipalmata and E. calamita and no response in P. cultripes. However, no significant alterations in glucose concentrations were observed in any of the studied frog species. This relatively weak freezing tolerance response differs from the strong response exhibited by amphibians inhabiting high latitudes and enduring prolonged freezing conditions, suggesting potential reliance on behavioural adaptations to cope with occasional freezing episodes.


Subject(s)
Anura , Freezing , Glucose , Urea , Animals , Anura/physiology , Anura/metabolism , Urea/metabolism , Glucose/metabolism , Acclimatization , Ranidae/physiology , Climate
18.
J Med Chem ; 67(9): 7487-7503, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38688020

ABSTRACT

Although bactericidal cationic antimicrobial peptides (AMPs) have been well characterized, less information is available about the antibacterial properties and mechanisms of action of nonbactericidal AMPs, especially nonbactericidal anionic AMPs. Herein, a novel anionic antimicrobial peptide (Gy-CATH) with a net charge of -4 was identified from the skin of the frog Glyphoglossus yunnanensis. Gy-CATH lacks direct antibacterial effects but exhibits significantly preventive and therapeutic capacities in mice that are infected with Staphylococcus aureus, Enterobacteriaceae coli, methicillin-resistant Staphylococcus aureus (MRSA), or carbapenem-resistant E. coli (CREC). In vitro and in vivo investigations proved the regulation of Gy-CATH on neutrophils and macrophages involved in the host immune defense against infection. Moreover, Gy-CATH significantly reduced the extent of pulmonary fibrin deposition and prevented thrombosis in mice, which was attributed to the regulatory role of Gy-CATH in physiological anticoagulants and platelet aggregation. These findings show that Gy-CATH is a potential candidate for the treatment of bacterial infection.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/therapeutic use , Anura , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Escherichia coli/drug effects , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Thrombosis/prevention & control , Thrombosis/drug therapy
19.
Environ Sci Pollut Res Int ; 31(20): 29777-29793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592634

ABSTRACT

The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.


Subject(s)
Climate Change , Metal Nanoparticles , Animals , Metal Nanoparticles/toxicity , Anura , Nickel/toxicity , Zinc Oxide/toxicity , Larva/drug effects , Titanium/toxicity , Aluminum Oxide/toxicity
20.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673985

ABSTRACT

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Humans , Anura , Skin/microbiology , Skin/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...