Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.007
Filter
1.
Mol Med ; 30(1): 154, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300372

ABSTRACT

BACKGROUND: Thoracic aortic dissection (TAD) is an irreversible cardiovascular disorder with high mortality and morbidity. However, the molecular mechanisms remain elusive. Thus, identifying an effective therapeutic target to prevent TAD is especially critical. The purpose of this study is to elucidate the potential mechanism of inflammation and vascular smooth muscle cell (VSMCs) phenotypic switch in ß-aminopropionitrile fumarate (BAPN)-induced TAD. METHODS: A mouse model of TAD induced by BAPN and IL-1ß -stimulated HVSMCs in vivo and in vitro models, respectively. ACE2 Knockdown mice treated with BAPN or without, and the TAD mouse model was treated with or without AAV-ACE2. Transthoracic ultrasound was conducted for assessment the maximum internal diameter of the thoracic aorta arch. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Western blot were used to detect the expression of MMP2, MMP9, ACE2, SIRT3, OPN, SM22α and other inflammatory markers. The circulating levels of ACE2 was measured by ELISA assay. Histological changes of thoracic aorta tissues were assessed by H&E, EVG and IHC analysis. RESULTS: We found that circulating levels of and the protein levels of ACE2 were increased in the TAD mouse model and in patients with TAD. For further evidence, ACE2 deficiency decelerated the formation of TAD. However, overexpression of ACE2 aggravated BAPN-induced aortic injury and VSMCs phenotypic switch via lowered SIRT3 expression and elevated inflammatory cytokine expression. CONCLUSION: ACE2 deficiency prevented the development of TAD by inhibiting inflammation and VSMCs phenotypic switch in a SIRT3-dependent manner, suggesting that the ACE2/SIRT3 signaling pathway played a pivotal role in the pathological process of TAD and might be a potential therapeutical target.


Subject(s)
Angiotensin-Converting Enzyme 2 , Aortic Aneurysm, Thoracic , Aortic Dissection , Disease Models, Animal , Inflammation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Sirtuin 3 , Animals , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Mice , Aortic Dissection/metabolism , Aortic Dissection/etiology , Aortic Dissection/genetics , Aortic Dissection/pathology , Myocytes, Smooth Muscle/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuin 3/deficiency , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Inflammation/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/etiology , Aortic Aneurysm, Thoracic/genetics , Male , Phenotype , Humans , Mice, Knockout , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/drug effects , Aminopropionitrile/pharmacology , Mice, Inbred C57BL , Dissection, Thoracic Aorta
2.
Vascul Pharmacol ; 156: 107418, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39159736

ABSTRACT

Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 µM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.


Subject(s)
Catechols , Mesenteric Arteries , Molecular Docking Simulation , Rats, Inbred SHR , Vasodilation , Vasodilator Agents , Animals , Vasodilation/drug effects , Male , Catechols/pharmacology , Catechols/chemistry , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Female , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Swine , Dose-Response Relationship, Drug , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/metabolism , Arterial Pressure/drug effects , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Rats , Sex Factors , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal , Structure-Activity Relationship , Cyclic GMP/metabolism
3.
Clin Sci (Lond) ; 138(17): 1071-1087, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39136472

ABSTRACT

Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3ß and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.


Subject(s)
Adipose Tissue , Down-Regulation , Endothelin-1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Reactive Oxygen Species , Animals , Endothelin-1/metabolism , Obesity/metabolism , Obesity/physiopathology , Male , Adipose Tissue/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Bosentan/pharmacology , Diet, High-Fat , Mice , Oxidative Stress , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics , Endothelin-Converting Enzymes/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology
4.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125672

ABSTRACT

Torilis japonica (TJ) fruit, is a herb that is traditionally used for erectile dysfunction (ED). Given the shared mechanisms of ED and hypertension through vascular smooth muscle, we hypothesized that TJ would be effective in vasodilation and blood pressure reduction. This study confirmed the authenticity of TJ samples via DNA barcoding and quantified the main active compound, torilin, using HPLC. TJ was extracted with distilled water (TJW) and 50% ethanol (TJE), yielding torilin contents of 0.35 ± 0.01% and 2.84 ± 0.02%, respectively. Ex vivo tests on thoracic aortic rings from Sprague-Dawley rats showed that TJE (3-300 µg/mL) induced endothelium-independent, concentration-dependent vasodilation, unlike TJW. Torilin caused concentration-dependent relaxation with an EC50 of 210 ± 1.07 µM. TJE's effects were blocked by a voltage-dependent K+ channel blocker and alleviated contractions induced by CaCl2 and angiotensin II. TJE inhibited vascular contraction induced by phenylephrine or KCl via extracellular CaCl2 and enhanced inhibition with nifedipine, indicating involvement of voltage-dependent and receptor-operated Ca2+ channels. Oral administration of TJE (1000 mg/kg) significantly reduced blood pressure in spontaneously hypertensive rats. These findings suggest TJ extract's potential for hypertension treatment through vasorelaxant mechanisms, though further research is needed to confirm its efficacy and safety.


Subject(s)
Blood Pressure , Endothelium, Vascular , Fruit , Plant Extracts , Rats, Sprague-Dawley , Vasodilation , Animals , Rats , Vasodilation/drug effects , Plant Extracts/pharmacology , Blood Pressure/drug effects , Male , Fruit/chemistry , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Antihypertensive Agents/pharmacology , Vasodilator Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Rats, Inbred SHR , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology
5.
PLoS One ; 19(7): e0306783, 2024.
Article in English | MEDLINE | ID: mdl-39058681

ABSTRACT

BACKGROUND: The prevention of obesity represents a major health and socio-economic challenge. Nutraceuticals are regularly highlighted for their beneficial effects in preventing the metabolic disturbances associated with obesity. However, few studies have described the combined action of nutraceutical mixtures combining polyphenols with alkaloids. OBJECTIVE: The aim of this study was to evaluate the effects of long-term dietary supplementation with a mixture of Berberine, Citrus and Apple extracts (BCA) in the primary prevention of obesity and its metabolic and vascular complications in the obese Zucker rat, a spontaneous model of genetic obesity and insulin resistance. METHODS: Sixteen 8-week-old obese Zucker male rats were randomly divided into two groups: all rats received oral gavage daily either with water, untreated obese (U-ObZ) or BCA (BCA-ObZ) mixture for thirteen weeks. Morphological and metabolic parameters were measured along the study. Cumulative concentration-response curves to insulin, acetylcholine and phenylephrine were determined on isolated thoracic aorta. Colon permeability measurements were performed using the Ussing chamber technique. Fecal samples collected at the beginning and the end of the protocol were used as a template for amplification of the V3-V4 region of the 16S rDNA genes. RESULTS: BCA supplementation reduced weight gain (p<0.05) and food intake (p<0.05) in the BCA-ObZ group rats compared to the U-ObZ group rats. It also improved glucose tolerance (p<0.001) and decreased fasting insulin and Homeostasis model assessment index (p<0.05). Through ex vivo experiments, the BCA mixture enhanced significantly aortic insulin relaxation (p<0.01), reduced α1-adrenoceptor-mediated vasoconstriction (p<0.01), and decreased distal colon permeability. Moreover, short-chain fatty acid producers such as Bacteroides, Blautia, and Akkermansia were found to be increased by the BCA mixture supplementation. CONCLUSION: The results showed that a 13-week-supplementation with BCA mixture prevented weight gain and improved glucose metabolism in obese Zucker rats. We also demonstrated that BCA supplementation improved vascular function, colonic barrier permeability and gut microbiota profile.


Subject(s)
Berberine , Citrus , Dietary Supplements , Malus , Obesity , Plant Extracts , Rats, Zucker , Animals , Berberine/pharmacology , Berberine/therapeutic use , Male , Obesity/metabolism , Obesity/prevention & control , Obesity/drug therapy , Rats , Citrus/chemistry , Plant Extracts/pharmacology , Malus/chemistry , Insulin Resistance , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Insulin/blood , Insulin/metabolism
6.
Arterioscler Thromb Vasc Biol ; 44(9): 2053-2068, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989581

ABSTRACT

BACKGROUND: In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) treated advanced atherosclerosis using a blocking antibody for IL-1ß (interleukin-1ß); this significantly reduced cardiovascular events. However, whether IL-1ß regulates early disease, particularly LDL transcytosis, remains unknown. METHODS: We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1ß. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1ß and LDL to visualize acute LDL deposition in the aortic arch. RESULTS: Exposure to picomolar concentrations of IL-1ß induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1ß increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1ß on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNA sequencing data to curate a list of Rab (Ras-associated binding) GTPases affected by IL-1ß, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1ß. This was phenocopied by depletion of the Rab27a effector JFC1 (synaptotagmin-like protein 1). In vivo, IL-1ß increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1ß-induced LDL accumulation in the aorta. CONCLUSIONS: IL-1ß induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1ß may contribute to the acceleration of early disease.


Subject(s)
Coronary Vessels , Endothelial Cells , Interleukin-1beta , Lipoproteins, LDL , Mice, Knockout , Receptors, LDL , Signal Transduction , Transcytosis , rab GTP-Binding Proteins , Interleukin-1beta/metabolism , Animals , Humans , Receptors, LDL/genetics , Receptors, LDL/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Lipoproteins, LDL/metabolism , Coronary Vessels/metabolism , Coronary Vessels/drug effects , Cells, Cultured , Mice, Inbred C57BL , Caveolin 1/metabolism , Caveolin 1/genetics , Aortic Diseases/metabolism , Aortic Diseases/genetics , Aortic Diseases/pathology , Disease Models, Animal , Aorta, Thoracic/metabolism , Aorta, Thoracic/drug effects , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Male , Mice
7.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38712392

ABSTRACT

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Corticosterone , Isoproterenol , Animals , Male , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue/metabolism , Adrenergic beta-Agonists/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Corticosterone/metabolism , Culture Media, Conditioned/pharmacology , Isoproterenol/pharmacology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Receptors, Adrenergic, beta/metabolism
8.
Arterioscler Thromb Vasc Biol ; 44(7): 1555-1569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779856

ABSTRACT

BACKGROUND: ß-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS: BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS: BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS: BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.


Subject(s)
Aminopropionitrile , Aorta, Thoracic , Aortic Rupture , Disease Models, Animal , Mice, Inbred C57BL , Animals , Aminopropionitrile/toxicity , Aminopropionitrile/pharmacology , Aorta, Thoracic/pathology , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Female , Male , Aortic Rupture/chemically induced , Aortic Rupture/pathology , Aortic Rupture/metabolism , Aortic Rupture/prevention & control , Mice , Vascular Remodeling/drug effects , Dilatation, Pathologic , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Age Factors , Time Factors , Sex Factors , Cell Proliferation/drug effects , Protein-Lysine 6-Oxidase/metabolism
9.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732244

ABSTRACT

Cardiovascular outcome in Marfan syndrome (MFS) patients most prominently depends on aortic aneurysm progression with subsequent aortic dissection. Angiotensin II receptor blockers (ARBs) prevent aneurysm formation in MFS mouse models. In patients, ARBs only slow down aortic dilation. Downstream signalling from the angiotensin II type 1 receptor (AT1R) is mediated by G proteins and ß-arrestin recruitment. AT1R also interacts with the monocyte chemoattractant protein-1 (MCP-1) receptor, resulting in inflammation. In this study, we explore the targeting of ß-arrestin signalling in MFS mice by administering TRV027. Furthermore, because high doses of the ARB losartan, which has been proven beneficial in MFS, cannot be achieved in humans, we investigate a potential additive effect by combining lower concentrations of losartan (25 mg/kg/day and 5 mg/kg/day) with barbadin, a ß-arrestin blocker, and DMX20, a C-C chemokine receptor type 2 (CCR2) blocker. A high dose of losartan (50 mg/kg/day) slowed down aneurysm progression compared to untreated MFS mice (1.73 ± 0.12 vs. 1.96 ± 0.08 mm, p = 0.0033). TRV027, the combination of barbadin with losartan (25 mg/kg/day), and DMX-200 (90 mg/kg/day) with a low dose of losartan (5 mg/kg/day) did not show a significant beneficial effect. Our results confirm that while losartan effectively halts aneurysm formation in Fbn1C1041G/+ MFS mice, neither TRV027 alone nor any of the other compounds combined with lower doses of losartan demonstrate a notable impact on aneurysm advancement. It appears that complete blockade of AT1R function, achieved by administrating a high dosage of losartan, may be necessary for inhibiting aneurysm progression in MFS.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Aortic Aneurysm , Losartan , Marfan Syndrome , Signal Transduction , Mice , Marfan Syndrome/drug therapy , Marfan Syndrome/pathology , Disease Models, Animal , Aortic Aneurysm/drug therapy , Aortic Aneurysm/prevention & control , Oligopeptides/administration & dosage , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Pyrimidines/administration & dosage , Drug Combinations , Losartan/administration & dosage , Angiotensin Receptor Antagonists/administration & dosage , Signal Transduction/drug effects , Humans , Angiotensin II Type 1 Receptor Blockers/administration & dosage
10.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Article in Portuguese, English | MEDLINE | ID: mdl-38695407

ABSTRACT

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Subject(s)
Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Triiodothyronine , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Triiodothyronine/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Rats , Reproducibility of Results , Vasoconstrictor Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , In Vitro Techniques , Vasoconstriction/drug effects , Vasoconstriction/physiology
11.
BMC Pharmacol Toxicol ; 25(1): 33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783387

ABSTRACT

BACKGROUND: The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS: In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS: Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS: Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.


Subject(s)
AMP-Activated Protein Kinases , Aorta, Thoracic , Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Endothelial Cells , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Rotenone , Signal Transduction , Animals , Rotenone/toxicity , Rotenone/pharmacology , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Male , Apoptosis/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta, Thoracic/drug effects , Protein Serine-Threonine Kinases/metabolism , Rats , AMP-Activated Protein Kinase Kinases , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism
12.
Eur J Pharmacol ; 976: 176660, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38795756

ABSTRACT

Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.


Subject(s)
Aging , Aorta, Thoracic , Apigenin , Flavanones , Galactose , Glycation End Products, Advanced , NF-kappa B , Oxidative Stress , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Apigenin/pharmacology , Apigenin/therapeutic use , Aging/drug effects , Aging/metabolism , Male , NF-kappa B/metabolism , Rats , Signal Transduction/drug effects , Oxidative Stress/drug effects , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Antioxidants/pharmacology
13.
Morphologie ; 108(362): 100779, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38608628

ABSTRACT

BACKGROUND: One of the most recent hormones to be identified and isolated is irisin, extracted from mouse skeletal muscle in 2012. Irisin has been proven to alter blood pressure, which has an impact on blood vessels, enhance endothelial functions, and prevent injury to endothelial cells. The current study aimed to study the effect of irisin on the ultrastructure of the rat thoracic aorta using the transmission electron microscope (TEM). MATERIALS AND METHODS: Twenty female rats were recruited for this study and divided into a control group (non-injected), and four experimental groups (injected groups) each consisting of 4 rats. The experimental groups were injected intraperitoneally with different doses of irisin (250ng/mL, 500ng/mL, 1000ng/mL, and 2000ng/mL) twice a week for 4weeks. Then, the descending thoracic aorta of all experimental rats were resected and proceeded with imaging. RESULTS: The results of this study showed a change in the thickness of the tunica intima, internal elastic lamina, elastic lamellae, and external elastic lamina concerning increasing injected irisin concentration. While there was a significant increase in the thickness of tunica media (P<0.0001) and smooth muscle cells (P<0.05). Also, the results showed a significant increase in the number of elastic lamellae in the tunica media (P<0.0001). CONCLUSION: Irisin had a major impact on the elasticity of the rat thoracic aorta wall, suggesting that it influences the growth factors of the wall and activates smooth muscle cells in addition to endothelial cells.


Subject(s)
Aorta, Thoracic , Fibronectins , Microscopy, Electron, Transmission , Animals , Fibronectins/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/ultrastructure , Rats , Female , Tunica Intima/ultrastructure , Tunica Intima/drug effects , Rats, Sprague-Dawley , Tunica Media/drug effects , Tunica Media/ultrastructure
14.
J Recept Signal Transduct Res ; 44(1): 35-40, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38666646

ABSTRACT

BACKGROUND: The pineal product melatonin (MEL) modulates blood vessels through G protein-coupled receptors (GPCRs) called melatonin type 1 receptor (MT1R) and melatonin type 2 receptor (MT2R), in that order. The renin-angiotensin system (RAS), which breaks down angiotensin II (Ang II) to create Ang 1-7, is thought to be mostly controlled by angiotensin-converting enzyme-2 (ACE2). AIM: The current work examines the involvement of ACE2 inhibitor, MEL, and ramelteon (RAM) in the vascular response to Ang II activities in the endothelial denuded (E-) and intact (E+) rat isolated thoracic aortic rings. METHOD: The isometric tension was measured to evaluate the vascular Ang II contractility using dose response curve (DRC). RESULTS: MEL and RAM caused a rightward shift of Ang II in endothelium E + and endothelium E- aorta. CONCLUSION: According to the current study, the distribution of MEL receptors and the endothelium's condition are related to the vasomodulatory effect of MEL and ACE2 on Ang II attenuation. These physiological interactions can control vascular tone and increase Ang II reactivity denude endothelial layaer.


Subject(s)
Angiotensin II , Angiotensin-Converting Enzyme 2 , Melatonin , Animals , Melatonin/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Rats , Angiotensin-Converting Enzyme 2/metabolism , Renin-Angiotensin System/drug effects , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Peptidyl-Dipeptidase A/metabolism , Aorta/drug effects , Aorta/metabolism , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/pharmacology
15.
J Cardiovasc Transl Res ; 17(4): 803-815, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38411834

ABSTRACT

The increased incidence of hypertension associated with obstructive sleep apnea (OSA) presents significant physical, psychological, and economic challenges. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a role in both OSA and hypertension, yet the therapeutic potential of PPARγ agonists and antagonists for OSA-related hypertension remains unexplored. Therefore, we constructed a chronic intermittent hypoxia (CIH)-induced hypertension rat model that mimics the pathogenesis of OSA-related hypertension in humans. The model involved administering PPARγ agonist rosiglitazone (RSG), PPARγ antagonist GW9662, or normal saline, followed by regular monitoring of blood pressure and thoracic aorta analysis using staining and electron microscopy. Intriguingly, our results indicated that both RSG and GW9662 appeared to potently counteract CIH-induced hypertension. In silico study suggested that GW9662's antihypertensive effect might mediated through angiotensin II receptor type 1 (AGTR1). Our findings provide insights into the mechanisms of OSA-related hypertension and propose novel therapeutic targets.


Subject(s)
Anilides , Antihypertensive Agents , Aorta, Thoracic , Blood Pressure , Disease Models, Animal , Hypertension , Hypoxia , PPAR gamma , Rats, Sprague-Dawley , Rosiglitazone , Animals , PPAR gamma/agonists , PPAR gamma/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension/metabolism , Rosiglitazone/pharmacology , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Male , Hypoxia/complications , Hypoxia/drug therapy , Anilides/pharmacology , Blood Pressure/drug effects , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Aorta, Thoracic/pathology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/drug effects , Chronic Disease , Signal Transduction , Sleep Apnea, Obstructive/drug therapy , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Molecular Docking Simulation , Vascular Remodeling/drug effects
16.
J Cardiovasc Pharmacol ; 83(5): 474-481, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38113918

ABSTRACT

ABSTRACT: Studies have examined the therapeutic effect of levosimendan on cardiovascular diseases such as heart failure, perioperative cardiac surgery, and septic shock, but the specific mechanism in mice remains largely unknown. This study aimed to investigate the relaxation mechanism of levosimendan in the thoracic aorta smooth muscle of mice. Levosimendan-induced relaxation of isolated thoracic aortic rings that were precontracted with norepinephrine or KCl was recorded in an endothelium-independent manner. Vasodilatation by levosimendan was not associated with the production of the endothelial relaxation factors nitric oxide and prostaglandins. The voltage-dependent K + channel (K V ) blocker (4-aminopyridine) and selective K Ca blocker (tetraethylammonium) had no effect on thoracic aortas treated with levosimendan, indicating that K V and K Ca channels may not be involved in the levosimendan-induced relaxation mechanism. Although the inwardly rectifying K + channel (K ir ) blocker (barium chloride) and the K ATP channel blocker (glibenclamide) significantly inhibited levosimendan-induced vasodilation in the isolated thoracic aorta, barium chloride had a much stronger inhibitory effect on levosimendan-induced vasodilation than glibenclamide, suggesting that levosimendan-induced vasodilation may be mediated by K ir channels. The vasodilation effect and expression of K ir 2.1 induced by levosimendan were further enhanced by the PKC inhibitor staurosporine. Extracellular calcium influx was inhibited by levosimendan without affecting intracellular Ca 2+ levels in the isolated thoracic aorta. These results suggest that K ir channels play a more important role than K ATP channels in regulating vascular tone in larger arteries and that the activity of the K ir channel is enhanced by the PKC pathway.


Subject(s)
Aorta, Thoracic , Muscle, Smooth, Vascular , Protein Kinase C , Simendan , Vasodilation , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Simendan/pharmacology , Male , Vasodilation/drug effects , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Mice , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/drug effects , Vasodilator Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Potassium Channel Blockers/pharmacology
17.
Clin Sci (Lond) ; 136(12): 973-987, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35678315

ABSTRACT

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.


Subject(s)
Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Acetylcholine/metabolism , Administration, Inhalation , Animals , Aorta, Thoracic/drug effects , Female , Male , Mice , Nicotine/administration & dosage , Pulmonary Artery/drug effects , Up-Regulation , Vasodilation/drug effects , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
18.
Toxins (Basel) ; 14(2)2022 01 26.
Article in English | MEDLINE | ID: mdl-35202128

ABSTRACT

The uremic toxin indoxyl sulfate (IS), elevated in chronic kidney disease (CKD), is known to contribute towards progressive cardiovascular disease. IS activates the aryl hydrocarbon receptor (AhR) mediating oxidative stress and endothelial dysfunction via activation of the CYP1A1 pathway. The present study examines AhR inhibition with the antagonist, CH223191, on IS-mediated impairment of vascular endothelial function and disruption of redox balance. The acute effects of IS on endothelium-dependent relaxation were assessed in aortic rings from Sprague Dawley rats exposed to the following conditions: (1) control; (2) IS (300 µM); (3) IS + CH223191 (1 µM); (4) IS + CH223191 (10 µM). Thereafter, tissues were assessed for changes in expression of redox markers. IS reduced the maximum level of endothelium-dependent relaxation (Rmax) by 42% (p < 0.001) compared to control, this was restored in the presence of increasing concentrations of CH223191 (p < 0.05). Rings exposed to IS increased expression of CYP1A1, nitro-tyrosine, NADPH oxidase 4 (NOX4), superoxide, and reduced eNOS expression (p < 0.05). CH223191 (10 µM) restored expression of these markers back to control levels (p < 0.05). These findings demonstrate the adverse impact of IS-mediated AhR activation on the vascular endothelium, where oxidative stress may play a critical role in inducing endothelial dysfunction in the vasculature of the heart and kidneys. AhR inhibition could provide an exciting novel therapy for CVD in the CKD setting.


Subject(s)
Aorta, Thoracic/drug effects , Azo Compounds/pharmacology , Endothelium, Vascular/drug effects , Indican/pharmacology , Pyrazoles/pharmacology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiology , Cytochrome P-450 CYP1A1/genetics , Endothelium, Vascular/physiology , Gene Expression/drug effects , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic , Vasodilation/drug effects
19.
Pharmacol Res ; 176: 106051, 2022 02.
Article in English | MEDLINE | ID: mdl-34973467

ABSTRACT

Aortic dissection (AD) is a disease with high mortality and lacks effective drug treatment. Recent studies have shown that the development of AD is closely related to glucose metabolism. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme and plays an important role in cardiovascular disease. However, the role of LDHA in the progression of AD remains to be elucidated. Here, we found that the level of LDHA was significantly elevated in AD patients and the mouse model established by BAPN combined with Ang II. In vitro, the knockdown of LDHA reduced the growth of human aortic vascular smooth muscle cells (HAVSMCs), glucose consumption, and lactate production induced by PDGF-BB. The overexpression of LDHA in HAVSMCs promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype, and increased the expression of MMP2/9. Mechanistically, LDHA promoted MMP2/9 expression through the LDHA-NDRG3-ERK1/2-MMP2/9 pathway. In vivo, Oxamate, LDH and lactate inhibitor, reduced the degradation of elastic fibers and collagen deposition, inhibited the phenotypic transformation of HAVSMCs from contractile phenotype to synthetic phenotype, reduced the expression of NDRG3, p-ERK1/2, and MMP2/9, and delayed the progression of AD. To sum up, the increase of LDHA promotes the production of MMP2/9, stimulates the degradation of extracellular matrix (ECM), and promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype. Oxamate reduced the progression of AD in mice. LDHA may be a therapeutic target for AD.


Subject(s)
Aortic Dissection/drug therapy , Lactate Dehydrogenase 5/antagonists & inhibitors , Oxamic Acid/therapeutic use , Adult , Aged , Aortic Dissection/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Glucose/metabolism , Humans , Lactate Dehydrogenase 5/genetics , Lactate Dehydrogenase 5/metabolism , Lactic Acid/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Oxamic Acid/pharmacology
20.
Toxicology ; 465: 153067, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34902535

ABSTRACT

Tributyltin chloride (TBT) is an organotin compound widely used in several high biocides for agroindustrial applications, such as fungicides, and marine antifouling paints leading to endocrine disrupting actions, such as imposex development in mollusks. In female rats, TBT has been shown to promote ovarian dysfunction, reduction of estrogen protective effect in the vascular morphophysiology, at least in part by oxidative stress consequences. Estrogen causes coronary endothelium-dependent and independent vasodilation. However, the TBT effects on cardiovascular system of male rats are not fully understood. The aim of this study was to evaluate the effects of subacute TBT exposure in aorta vascular reactivity from male wistar rats. Rats were randomly divided into three groups: control (C), TBT 500 ng/kg/day and TBT 1000 ng/kg/day. TBT was administered daily for 30 days by oral gavage. We found that TBT exposure enhanced testosterone serum levels and it was also observed obesogenic properties. TBT exposure evoked an increase in endothelium-dependent and independent phenylephrine-induced contraction, associated to an inhibition in eNOS activity. On the other hand, it was observed an enhancement of iNOS and NF-kB protein expression. We also observed an increase in oxidative stress parameters, such as superoxide dismutase (SOD) and catalase expression, and also an increase in malondialdehyde production. Finally, TBT exposure produced aortic intima-media thickness. Taken together, these data suggest a potential cardiovascular toxicological effect after subacute TBT exposure in male rats.


Subject(s)
Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Trialkyltin Compounds/toxicity , Vasoconstriction/drug effects , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Lipid Peroxidation/drug effects , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Phosphorylation , Rats, Wistar , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL