Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 651
Filter
1.
Arterioscler Thromb Vasc Biol ; 42(1): e1-e9, 2022 01.
Article in English | MEDLINE | ID: mdl-34758632

ABSTRACT

OBJECTIVE: Antibody blockade of the "do not eat me" signal CD47 (cluster of differentiation 47) enhances efferocytosis and reduces lesion size and necrotic core formation in murine atherosclerosis. TNF (Tumor necrosis factor)-α expression directly enhances CD47 expression, and elevated TNF-α is observed in the absence of the proefferocytosis receptor LRP1 (low-density lipoprotein receptor-related protein 1), a regulator of atherogenesis and inflammation. Thus, we tested the hypothesis that CD47 blockade requires the presence of macrophage LRP1 to enhance efferocytosis, temper TNF-α-dependent inflammation, and limit atherosclerosis. Approach and Results: Mice lacking systemic apoE (apoE-/-), alone or in combination with the loss of macrophage LRP1 (double knockout), were fed a Western-type diet for 12 weeks while receiving anti-CD47 antibody (anti-CD47) or IgG every other day. In apoE-/- mice, treatment with anti-CD47 reduced lesion size by 25.4%, decreased necrotic core area by 34.5%, and decreased the ratio of free:macrophage-associated apoptotic bodies by 47.6% compared with IgG controls (P<0.05), confirming previous reports. Double knockout mice treated with anti-CD47 showed no differences in lesion size, necrotic core area, or the ratio of free:macrophage-associated apoptotic bodies compared with IgG controls. In vitro efferocytosis was 30% higher when apoE-/- phagocytes were incubated with anti-CD47 compared with IgG controls (P<0.05); however, anti-CD47 had no effect on efferocytosis in double knockout phagocytes. Analyses of mRNA and protein showed increased CD47 expression in anti-inflammatory IL (interleukin)-4 treated LRP1-/- macrophages compared with wild type, but no differences were observed in inflammatory lipopolysaccharide-treated macrophages. CONCLUSIONS: The proefferocytosis receptor LRP1 in macrophages is necessary for anti-CD47 blockade to enhance efferocytosis, limit atherogenesis, and decrease necrotic core formation in the apoE-/- model of atherosclerosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Blocking/pharmacology , Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , CD47 Antigen/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Animals , Aorta/immunology , Aorta/metabolism , Aorta/pathology , Aortic Diseases/immunology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD47 Antigen/immunology , CD47 Antigen/metabolism , Cells, Cultured , Disease Models, Animal , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Necrosis , Plaque, Atherosclerotic , Tumor Necrosis Factor-alpha/metabolism
2.
Cardiovasc Res ; 118(2): 475-488, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33538785

ABSTRACT

AIMS: Atherosclerosis is the dominant pathologic basis of many cardiovascular diseases. Large genome-wide association studies have identified that single-nucleotide polymorphisms proximal to Krüppel-like factor 14 (KLF14), a member of the zinc finger family of transcription factors, are associated with higher cardiovascular risks. Macrophage dysfunction contributes to atherosclerosis development and has been recognized as a potential therapeutic target for treating many cardiovascular diseases. Herein, we address the biologic function of KLF14 in macrophages and its role during the development of atherosclerosis. METHODS AND RESULTS: KLF14 expression was markedly decreased in cholesterol loaded foam cells, and overexpression of KLF14 significantly increased cholesterol efflux and inhibited the inflammatory response in macrophages. We generated myeloid cell-selective Klf14 knockout (Klf14LysM) mice in the ApoE-/- background for the atherosclerosis study. Klf14LysMApoE-/- and litter-mate control mice (Klf14fl/flApoE-/-) were placed on the Western Diet for 12 weeks to induce atherosclerosis. Macrophage Klf14 deficiency resulted in increased atherosclerosis development without affecting the plasma lipid profiles. Klf14-deficient peritoneal macrophages showed significantly reduced cholesterol efflux resulting in increased lipid accumulation and exacerbated inflammatory response. Mechanistically, KLF14 upregulates the expression of a key cholesterol efflux transporter, ABCA1 (ATP-binding cassette transporter A1), while it suppresses the expression of several critical components of the inflammatory cascade. In macrophages, activation of KLF14 by its activator, perhexiline, a drug clinically used to treat angina, significantly inhibited the inflammatory response and increased cholesterol efflux in a KLF14-dependent manner in macrophages without triggering hepatic lipogenesis. CONCLUSIONS: This study provides insights into the anti-atherosclerotic effects of myeloid KLF14 through promoting cholesterol efflux and suppressing the inflammatory response. Activation of KLF14 may represent a potential new therapeutic approach to prevent or treat atherosclerosis.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Kruppel-Like Transcription Factors/deficiency , Macrophages/metabolism , Plaque, Atherosclerotic , ATP Binding Cassette Transporter 1/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Cholesterol/metabolism , Disease Models, Animal , Disease Progression , Female , Hep G2 Cells , Humans , Interleukin-1beta/metabolism , Kruppel-Like Transcription Factors/genetics , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Signal Transduction , THP-1 Cells , Transcription Factor RelA/metabolism
3.
Front Immunol ; 12: 731701, 2021.
Article in English | MEDLINE | ID: mdl-34630411

ABSTRACT

Aortic diseases are the primary public health concern. As asymptomatic diseases, abdominal aortic aneurysm (AAA) and atherosclerosis are associated with high morbidity and mortality. The inflammatory process constitutes an essential part of a pathogenic cascade of aortic diseases, including atherosclerosis and aortic aneurysms. Inflammation on various vascular beds, including endothelium, smooth muscle cell proliferation and migration, and inflammatory cell infiltration (monocytes, macrophages, neutrophils, etc.), play critical roles in the initiation and progression of aortic diseases. The tryptophan (Trp) metabolism or kynurenine pathway (KP) is the primary way of degrading Trp in most mammalian cells, disturbed by cytokines under various stress. KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), etc. Depends on the cell types, these metabolites can elicit both hyper- and anti-inflammatory effects. Accumulating evidence obtained from various animal disease models indicates that KP contributes to the inflammatory process during the development of vascular disease, notably atherosclerosis and aneurysm development. This review outlines current insights into how perturbed Trp metabolism instigates aortic inflammation and aortic disease phenotypes. We also briefly highlight how targeting Trp metabolic pathways should be considered for treating aortic diseases.


Subject(s)
Aorta/metabolism , Aortic Aneurysm, Abdominal/metabolism , Aortitis/metabolism , Atherosclerosis/metabolism , Inflammation Mediators/metabolism , Tryptophan/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Aorta/drug effects , Aorta/immunology , Aorta/pathology , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/immunology , Aortic Aneurysm, Abdominal/pathology , Aortitis/drug therapy , Aortitis/immunology , Aortitis/pathology , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Atherosclerosis/pathology , Humans , Inflammation Mediators/antagonists & inhibitors , Kynurenine/metabolism , Signal Transduction
4.
Am J Physiol Heart Circ Physiol ; 321(4): H756-H769, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34506228

ABSTRACT

Inflammation caused by infiltrating macrophages and T cells promotes plaque growth in atherosclerosis. Cadherin-11 (CDH11) is a cell-cell adhesion protein implicated in several fibrotic and inflammatory diseases. Much of the research on CDH11 concerns its role in fibroblasts, although its expression in immune cells has been noted as well. The objective of this study was to assess the effect of CDH11 on the atherosclerotic immune response. In vivo studies of atherosclerosis indicated an increase in Cdh11 in plaque tissue. However, global loss of Cdh11 resulted in increased atherosclerosis and inflammation. It also altered the immune response in circulating leukocytes, decreasing myeloid cell populations and increasing T-cell populations, suggesting possible impaired myeloid migration. Bone marrow transplants from Cdh11-deficient mice resulted in similar immune cell profiles. In vitro examination of Cdh11-/- macrophages revealed reduced migration, despite upregulation of a number of genes related to locomotion. Flow cytometry revealed an increase in CD3+ and CD4+ helper T-cell populations in the blood of both the global Cdh11 loss and the bone marrow transplant animals, possibly resulting from increased expression by Cdh11-/- macrophages of major histocompatibility complex class II molecule genes, which bind to CD4+ T cells for coordinated activation. CDH11 fundamentally alters the immune response in atherosclerosis, resulting in part from impaired macrophage migration and altered macrophage-induced T-cell activation.NEW & NOTEWORTHY Cadherin-11 is well known to contribute to inflammatory and fibrotic disease. Here, we examined its role in atherosclerosis progression, which is predominantly an inflammatory process. We found that while cadherin-11 is associated with plaque progression, global loss of cadherin-11 exacerbated the disease phenotype. Moreover, loss of cadherin-11 in bone marrow-derived immune cells resulted in impaired macrophage migration and an unexplained increase in circulating helper T cells, presumably due to altered macrophage function without cadherin-11.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Cadherins/deficiency , Chemotaxis , Macrophages/metabolism , Plaque, Atherosclerotic , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Bone Marrow Transplantation , Cadherins/genetics , Disease Models, Animal , Female , Lymphocyte Activation , Macrophages/immunology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology
5.
J Am Heart Assoc ; 10(15): e021707, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34325521

ABSTRACT

Background Abdominal aortic aneurysm (AAA) is a life-threatening vascular disorder characterized by chronic inflammation of the aortic wall, which lacks effective pharmacotherapeutic remedies and has an extremely high mortality. Nuclear receptor NR4A1 (Nur77) functions in various chronic inflammatory diseases. However, the influence of Nur77 on AAA has remained unclear. Herein, we sought to determine the effects of Nur77 on the development of AAA. Methods and Results We observed that Nur77 expression decreased significantly in human and mice AAA lesions. Deletion of Nur77 accelerated the development of AAA in mice, as evidenced by increased AAA incidence, abdominal aortic diameters, elastin fragmentation, and collagen content. Consistent with genetic manipulation, pharmacological activation of Nur77 by celastrol showed beneficial effects against AAA. Microscopic and molecular analyses indicated that the detrimental effects of Nur77 deficiency were associated with aggravated macrophage infiltration in AAA lesions and increased pro-inflammatory cytokines secretion and matrix metalloproteinase (MMP-9) expression. Bioinformatics analyses further revealed that LOX-1 was upregulated by Nur77 deficiency and consequently increased the expression of cytokines and MMP-9. Moreover, rescue experiments verified that LOX-1 notably aggravated inflammatory response, an effect that was blunted by Nur77. Conclusions This study firstly demonstrated a crucial role of Nur77 in the formation of AAA by targeting LOX-1, which implicated Nur77 might be a potential therapeutic target for AAA.


Subject(s)
Aorta , Inflammation/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Scavenger Receptors, Class E/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Aneurysm, Abdominal/metabolism , Cytokines/metabolism , Drug Discovery , Elastin/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Organ Size , Signal Transduction , Vascular Remodeling/immunology
6.
Clin Exp Immunol ; 206(1): 12-27, 2021 10.
Article in English | MEDLINE | ID: mdl-34109619

ABSTRACT

Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.


Subject(s)
Antigen Presentation , Aorta/immunology , Atherosclerosis/immunology , Dendritic Cells/immunology , Immune Tolerance , Animals , Humans
8.
Theranostics ; 11(12): 5728-5741, 2021.
Article in English | MEDLINE | ID: mdl-33897878

ABSTRACT

Human Cytomegalovirus (CMV) infection is associated with atherosclerosis, higher cardiovascular disease (CVD) risk, and an increase in memory T-cells (Tmem). T-cells have also been implicated in CVD, independently of CMV infection. To better understand the CMV-associated CVD risk, we examined the association between CMV (IgG) serostatus and central aortic (carotid-to-femoral) pulse wave velocity (cfPWV), an early, independent predictor of CVD. We also investigated if such an association might be reflected by the distribution of Tmem and/or other T-cell subsets. Methods: Healthy older volunteers (60-93 years) underwent routine clinical and laboratory evaluation, including assessment of cfPWV in eligible participants. Flow-cytometry was used to assess proportions of memory T-cells, CD28null T-cells, and CMV-specific T-cells. The following associations were examined; CMV serostatus/cfPWV, CMV serostatus/proportion of Tmem, proportion of Tmem/cfPWV, CD28null T-cells/cfPWV, and CMV-specific T-cells/cfPWV. Linear regression models were used to adjust for age, sex, socioeconomic status, smoking, waist-to-hip ratio, cholesterol, and blood pressure as required. Results: Statistically significant positive associations were found (P-values for the fully adjusted models are given); CMV serostatus/cfPWV in men (P ≤ 0.01) but not in women, CMV serostatus/proportions of CD4 Tmem in men (P ≤ 0.05) but not in women; proportions of CD4 Tmem/cfPWV among CMV seropositive (CMV+) people (P ≤ 0.05) but not CMV seronegative (CMV-) people. Conclusion: CMV infection increases the CVD risk of older men by increasing cfPWV. This may be mediated in part by increased proportions of CD4 Tmem, higher numbers of which are found in CMV+ older people and more so among men than women. Given the high prevalence of CMV worldwide, our findings point to a significant global health issue. Novel strategies to mitigate the increased CVD risk associated with CMV may be required.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Carotid Arteries/immunology , Cytomegalovirus Infections/immunology , Immunologic Memory/immunology , Vascular Stiffness/immunology , Aged , Aorta/immunology , Aorta/virology , Atherosclerosis/immunology , Atherosclerosis/virology , Blood Pressure/immunology , CD28 Antigens/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/virology , Carotid Arteries/virology , Female , Humans , Male , Pulse Wave Analysis/methods , Risk Factors
9.
Arterioscler Thromb Vasc Biol ; 41(6): e338-e353, 2021 06.
Article in English | MEDLINE | ID: mdl-33792343
10.
Front Immunol ; 12: 623716, 2021.
Article in English | MEDLINE | ID: mdl-33717128

ABSTRACT

Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of large- and medium-sized arteries that affects the elderly. In recent years, advances in diagnostic imaging have revealed a greater degree of large vessel involvement than previously recognized, distinguishing classical cranial- from large vessel (LV)- GCA. GCA often co-occurs with the poorly understood inflammatory arthritis/bursitis condition polymyalgia rheumatica (PMR) and has overlapping features with other non-infectious granulomatous vasculitides that affect the aorta, namely Takayasu Arteritis (TAK) and the more recently described clinically isolated aortitis (CIA). Here, we review the literature focused on the immunopathology of GCA on the background of the three settings in which comparisons are informative: LV and cranial variants of GCA; PMR and GCA; the three granulomatous vasculitides (GCA, TAK, and CIA). We discuss overlapping and unique features between these conditions across clinical presentation, epidemiology, imaging, and conventional histology. We propose a model of GCA where abnormally activated circulating cells, especially monocytes and CD4+ T cells, enter arteries after an unknown stimulus and cooperate to destroy it and review the evidence for how this mechanistically occurs in active disease and improves with treatment.


Subject(s)
Aorta/pathology , Giant Cell Arteritis/pathology , Takayasu Arteritis/pathology , Temporal Arteries/pathology , Animals , Aorta/immunology , Aorta/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Giant Cell Arteritis/epidemiology , Giant Cell Arteritis/immunology , Giant Cell Arteritis/metabolism , Humans , Inflammation Mediators/metabolism , Monocytes/immunology , Monocytes/metabolism , Takayasu Arteritis/epidemiology , Takayasu Arteritis/immunology , Takayasu Arteritis/metabolism , Temporal Arteries/immunology , Temporal Arteries/metabolism
11.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669022

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease and patients are under an increased risk for cardiovascular (CV) events and mortality. The increased CV risk for patients with SLE seems to be caused by a premature and accelerated atherosclerosis, attributable to lupus-specific risk factors (i.e., increased systemic inflammation, altered immune status), apart from traditional CV risk factors. To date, there is no established experimental model to explore the pathogenesis of this increased CV risk in SLE patients. METHODS: Here we investigated whether MRL-Faslpr mice, which develop an SLE-like phenotype, may serve as a model to study lupus-mediated vascular disease. Therefore, MRL-Faslpr, MRL-++, and previously generated Il6-/- MRL-Faslpr mice were used to evaluate vascular changes and possible mechanisms of vascular dysfunction and damage. RESULTS: Contrary to MRL-++ control mice, lupus-prone MRL-Faslpr mice exhibited a pronounced vascular and perivascular leukocytic infiltration in various organs; expression of pro-inflammatory cytokines in the aorta and kidney was augmented; and intima-media thickness of the aorta was increased. IL-6 deficiency reversed these changes and restored aortic relaxation. CONCLUSION: Our findings demonstrate that the MRL-Faslpr mouse model is an excellent tool to investigate vascular damage in SLE mice. Moreover, IL-6 promotes vascular inflammation and damage and could potentially be a therapeutic target for the treatment of accelerated arteriosclerosis in SLE.


Subject(s)
Endothelium, Vascular/metabolism , Interleukin-6/metabolism , Lupus Erythematosus, Systemic/metabolism , T-Lymphocytes/immunology , Acetylcholine/pharmacology , Animals , Aorta/immunology , Aorta/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Endothelium, Vascular/drug effects , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/genetics , Kidney/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Thromb Haemost ; 121(11): 1530-1540, 2021 11.
Article in English | MEDLINE | ID: mdl-33618394

ABSTRACT

OBJECTIVES: The co-stimulatory CD40L-CD40 dyad exerts a critical role in atherosclerosis by modulating leukocyte accumulation into developing atherosclerotic plaques. The requirement for cell-type specific expression of both molecules, however, remains elusive. Here, we evaluate the contribution of CD40 expressed on endothelial cells (ECs) in a mouse model of atherosclerosis. METHODS AND RESULTS: Atherosclerotic plaques of apolipoprotein E-deficient (Apoe -/- ) mice and humans displayed increased expression of CD40 on ECs compared with controls. To interrogate the role of CD40 on ECs in atherosclerosis, we induced EC-specific (BmxCreERT2-driven) deficiency of CD40 in Apoe -/- mice. After feeding a chow diet for 25 weeks, EC-specific deletion of CD40 (iEC-CD40) ameliorated plaque lipid deposition and lesional macrophage accumulation but increased intimal smooth muscle cell and collagen content, while atherosclerotic lesion size did not change. Leukocyte adhesion to the vessel wall was impaired in iEC-CD40-deficient mice as demonstrated by intravital microscopy. In accord, expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in the vascular endothelium declined after deletion of CD40. In vitro, antibody-mediated inhibition of human endothelial CD40 significantly abated monocyte adhesion on ECs. CONCLUSION: Endothelial deficiency of CD40 in mice promotes structural features associated with a stable plaque phenotype in humans and decreases leukocyte adhesion. These results suggest that endothelial-expressed CD40 contributes to inflammatory cell migration and consecutive plaque formation in atherogenesis.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , CD40 Antigens/deficiency , Chemotaxis, Leukocyte , Endothelial Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , CD40 Antigens/genetics , Cell Adhesion , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Macrophages/immunology , Male , Mice, Knockout, ApoE , Monocytes/immunology , Plaque, Atherosclerotic , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism
13.
Cardiovasc Res ; 117(3): 743-755, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32219371

ABSTRACT

AIMS: B cell functions in the process of atherogenesis have been investigated but several aspects remain to be clarified. METHODS AND RESULTS: In this study, we show that follicular regulatory helper T cells (TFR) control regulatory B cell (BREG) populations in Apoe-/- mice models on a high-cholesterol diet (HCD). Feeding mice with HCD resulted in up-regulation of TFR and BREG cell populations, causing the suppression of proatherogenic follicular helper T cell (TFH) response. TFH cell modulation is correlated with the growth of atherosclerotic plaque size in thoracoabdominal aortas and aortic root plaques, suggesting that TFR cells are atheroprotective. During adoptive transfer experiments, TFR cells transferred into HCD mice decreased TFH cell populations, atherosclerotic plaque size, while BREG cell population and lymphangiogenesis are significantly increased. CONCLUSION: Our results demonstrate that, through different strategies, both TFR and TFH cells modulate anti- and pro-atherosclerotic immune processes in an Apoe-/- mice model since TFR cells are able to regulate both TFH and BREG cell populations as well as lymphangiogenesis and lipoprotein metabolism.


Subject(s)
Aorta/immunology , Aortic Diseases/immunology , Atherosclerosis/immunology , B-Lymphocytes, Regulatory/immunology , Cholesterol, Dietary , Diet, High-Fat , Plaque, Atherosclerotic , T Follicular Helper Cells/immunology , Adoptive Transfer , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes, Regulatory/transplantation , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Lymphangiogenesis , Mice, Inbred C57BL , Mice, Knockout, ApoE , Phenotype , T Follicular Helper Cells/metabolism , T Follicular Helper Cells/transplantation
14.
Cardiovasc Res ; 117(4): 1217-1228, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32609312

ABSTRACT

AIMS: Elevated serum immunoglobulins have been associated with experimental and human hypertension for decades but whether immunoglobulins and B cells play a causal role in hypertension pathology is unclear. In this study, we sought to determine the role of B cells and high-affinity class-switched immunoglobulins on hypertension and hypertensive end-organ damage to determine if they might represent viable therapeutic targets for this disease. METHODS AND RESULTS: We purified serum immunoglobulin G (IgG) from mice exposed to vehicle or angiotensin (Ang) II to induce hypertension and adoptively transferred these to wild type (WT) recipient mice receiving a subpressor dose of Ang II. We found that transfer of IgG from hypertensive animals does not affect blood pressure, endothelial function, renal inflammation, albuminuria, or T cell-derived cytokine production compared with transfer of IgG from vehicle infused animals. As an alternative approach to investigate the role of high-affinity, class-switched immunoglobulins, we studied mice with genetic deletion of activation-induced deaminase (Aicda-/-). These mice have elevated levels of IgM but virtual absence of class-switched immunoglobulins such as IgG subclasses and IgA. Neither male nor female Aicda-/- mice were protected from Ang II-induced hypertension and renal/vascular damage. To determine if IgM or non-immunoglobulin-dependent innate functions of B cells play a role in hypertension, we studied mice with severe global B-cell deficiency due to deletion of the membrane exon of the IgM heavy chain (µMT-/-). µMT-/- mice were also not protected from hypertension or end-organ damage induced by Ang II infusion or deoxycorticosterone acetate-salt treatment. CONCLUSIONS: These results suggest that B cells and serum immunoglobulins do not play a causal role in hypertension pathology.


Subject(s)
Blood Pressure/immunology , Hypertension/immunology , Immunoglobulin Class Switching , Immunoglobulin G/immunology , Memory B Cells/immunology , Angiotensin II , Animals , Antibody Affinity , Aorta/immunology , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Desoxycorticosterone Acetate , Disease Models, Animal , Female , Hypertension/blood , Hypertension/genetics , Hypertension/physiopathology , Immunoglobulin G/blood , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Male , Memory B Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sodium Chloride, Dietary
15.
Cardiovasc Res ; 117(3): 930-941, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32243494

ABSTRACT

AIMS: Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS: Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1ß-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated ß cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS: Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.


Subject(s)
Cell Transdifferentiation , Cytokines/metabolism , Inflammation Mediators/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Renal Insufficiency, Chronic/blood , Uromodulin/blood , Vascular Calcification/prevention & control , Adult , Aged , Animals , Aorta/immunology , Aorta/metabolism , Cell Transdifferentiation/drug effects , Cells, Cultured , Chondrogenesis , Cytokines/genetics , Disease Models, Animal , Female , Humans , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/immunology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/immunology , Osteogenesis , Phenotype , Protein Carbamylation , Renal Insufficiency, Chronic/immunology , Signal Transduction , Uromodulin/genetics , Uromodulin/pharmacology , Vascular Calcification/blood , Vascular Calcification/immunology , Young Adult
16.
Cardiovasc Res ; 117(1): 271-283, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32049355

ABSTRACT

AIMS: Aging is a risk factor for cardiovascular diseases and adaptive immunity has been implicated in angiotensin (Ang) II-induced target organ dysfunction. Herein, we sought to determine the role of T-cell senescence in Ang II-induced target organ impairment and to explore the underlying mechanisms. METHODS AND RESULTS: Flow cytometric analysis revealed that T cell derived from aged mice exhibited immunosenescence. Adoptive transfer of aged T cells to immunodeficient RAG1 KO mice accelerates Ang II-induced cardiovascular and renal fibrosis compared with young T-cell transfer. Aged T cells also promote inflammatory factor expression and superoxide production in these target organs. In vivo and in vitro studies revealed that Ang II promotes interferon-gamma (IFN-γ) production in the aged T cells comparing to young T cells. Importantly, transfer of senescent T cell that IFN-γ KO mitigates the impairment. Aged T-cell-conditioned medium stimulates inflammatory factor expression and oxidative stress in Ang II-treated renal epithelial cells compared with young T cells, and these effects of aged T-cell-conditioned medium are blunted after IFN-γ-neutralizing antibody pre-treatment. CONCLUSION: These results provide a significant insight into the contribution of senescent T cells to Ang II-induced cardiovascular dysfunction and provide an attractive possibility that targeting T cell specifically might be a potential strategy to treat elderly hypertensive patients with end-organ dysfunction.


Subject(s)
Aorta/immunology , Cardiovascular Diseases/immunology , Hypertension/immunology , Immunosenescence , Kidney Diseases/immunology , Kidney/immunology , Myocardium/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Angiotensin II , Animals , Aorta/metabolism , Aorta/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cell Line , Disease Models, Animal , Homeodomain Proteins/genetics , Humans , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Inflammation Mediators/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress , Phenotype , Superoxides/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Time Factors
17.
J Cell Physiol ; 236(6): 4555-4564, 2021 06.
Article in English | MEDLINE | ID: mdl-33241567

ABSTRACT

Selenium (Se) is an essential trace element in organism. Se deficiency can cause many diseases, including vascular disease. Studies have shown that inflammation is the main inducement of vascular disease, microRNA (miRNA) can influence inflammation in various ways, and Se deficiency can affect miRNAs expression. To study the mechanism of aorta damage caused by Se deficiency, we constructed a Se deficiency porcine aorta model and found that Se deficiency can significantly inhibit miR-223, which downregulates the expression of nucleotide-binding oligomerization domain-like receptor family 3 (NLRP3). Subsequently, we found that in Se deficiency group, NLRP3, and its downstream (caspase-1, apoptosis-related spot-like protein [ASC], IL-18, IL-1ß) expression was significantly increased. In vitro, we cultured pig iliac endothelium cell lines, and constructed miR-223 knockdown and overexpression models. NLRP3 messenger RNA and protein levels were significant increased in the knockdown group, and decreased in the overexpression group. The results of this study show that Se deficiency in porcine arteries can induce inflammation through miR-223/NLRP3.


Subject(s)
Aorta/metabolism , Aortitis/metabolism , Endothelial Cells/metabolism , Inflammasomes/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Selenium/deficiency , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Aorta/immunology , Aorta/pathology , Aortitis/genetics , Aortitis/immunology , Aortitis/pathology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cells, Cultured , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/pathology , Inflammasomes/genetics , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction , Sus scrofa
18.
Cardiovasc Res ; 117(14): 2755-2766, 2021 12 17.
Article in English | MEDLINE | ID: mdl-33063097

ABSTRACT

AIMS: CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis. METHODS AND RESULTS: Flow cytometry analysis of atherosclerotic lesions from apolipoprotein E-deficient mice revealed a pronounced increase in RORγt+CD8+ T cells compared to the spleen, indicating a lesion-specific increase in Tc17 cells. To study whether and how the Tc17 subset affects atherosclerosis, we performed an adoptive transfer of Tc17 cells or undifferentiated Tc0 cells into CD8-/- low-density lipoprotein receptor-deficient mice fed a Western-type diet. Using flow cytometry, we showed that Tc17 cells retained a high level of interleukin-17A production in vivo. Moreover, Tc17 cells produced lower levels of interferon-γ than their Tc0 counterparts. Analysis of the aortic root revealed that the transfer of Tc17 cells did not increase atherosclerotic lesion size, in contrast to Tc0-treated mice. CONCLUSION: These findings demonstrate a lesion-localized increase in Tc17 cells in an atherosclerotic mouse model. Tc17 cells appeared to be non-atherogenic, in contrast to their Tc0 counterpart.


Subject(s)
Aorta/immunology , Aortic Diseases/immunology , Atherosclerosis/immunology , CD8-Positive T-Lymphocytes/immunology , Interleukin-17/immunology , Plaque, Atherosclerotic , Adoptive Transfer , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Interferon-gamma/metabolism , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenotype , Signal Transduction
19.
PLoS One ; 15(12): e0240669, 2020.
Article in English | MEDLINE | ID: mdl-33301454

ABSTRACT

Rivaroxaban (RVX) was suggested to possess anti-inflammatory and vascular tone modulatory effects. The goal of this study was to investigate whether RVX impacts lipopolysaccharide (LPS)-induced acute vascular inflammatory response. Male rats were treated with 5 mg/kg RVX (oral gavage) followed by 10 mg/kg LPS i.p injection. Circulating levels of IL-6, MCP-1, VCAM-1, and ICAM-1 were measured in plasma 6 and 24 hours after LPS injection, while isolated aorta was used for gene expression analysis, immunohistochemistry, and vascular tone evaluation. RVX pre-treatment significantly reduced LPS mediated increase after 6h and 24h for IL-6 (4.4±2.2 and 2.8±1.7 fold), MCP-1 (1.4±1.5 and 1.3±1.4 fold) VCAM-1 (1.8±2.0 and 1.7±2.1 fold). A similar trend was observed in the aorta for iNOS (5.5±3.3 and 3.3±1.9 folds reduction, P<0.01 and P<0.001, respectively), VCAM-1 (1.3±1.2 and 1.4±1.3 fold reduction, P<0.05), and MCP-1 (3.9±2.2 and 1.9±1.6 fold reduction, P<0.01). Moreover, RVX pre-treatment, improved LPS-induced PE contractile dysfunction in aortic rings (Control vs LPS, Emax reduction = 35.4 and 31.19%, P<0.001; Control vs LPS+RVX, Emax reduction = 10.83 and 11.48%, P>0.05, respectively), resulting in 24.5% and 19.7% change in maximal constriction in LPS and LPS+RVX respectively. These data indicate that RVX pre-treatment attenuates LPS-induced acute vascular inflammation and contractile dysfunction.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Rivaroxaban/administration & dosage , Vasculitis/drug therapy , Vasoconstriction/drug effects , Administration, Oral , Animals , Aorta/drug effects , Aorta/immunology , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Humans , Lipopolysaccharides/immunology , Male , Rats , Vasculitis/blood , Vasculitis/immunology , Vasoconstriction/immunology
20.
J Tradit Chin Med ; 40(6): 938-946, 2020 12.
Article in English | MEDLINE | ID: mdl-33258345

ABSTRACT

OBJECTIVE: To further elucidate the mechanism underlying the anti-atherosclerotic effect of Dingxin recipe (DXR). METHODS: Fifty 6-week-old male ApoE-/- mice were randomly divided into the following groups: model, simvastatin (5 mg·kg-1·d-1), DXR low-dose (9.30 g·kg-1·d-1), DXR middle-dose (18.59 g·kg-1·d-1) and DXR high-dose (37.18 g·kg-1·d-1) (n = 10). Ten male C57BL/6J mice were used as the control group. All ApoE-/- mice were fed a high-fat diet (HFD) and the control mice received a common diet. After HFD for 12 weeks, the mice were treated with DXR or simvastatin for another 12 weeks. The expression of inflammatory cytokines and visfatin was determined in serum and atherosclerotic lesions by enzyme-linked immunosorbent assay. Visfatin expression was also assessed in aortic atherosclerotic plaques. Cultured vessel endothelial cells (VECs) were pretreated with DXR sera prior to visfatin. The effects of DXR were analyzed to elucidate its protective mechanism against visfatin-induced inflammation in VECs. RESULTS: DXR regulated blood lipids and reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intercellular adhesion molecules-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and visfatin expression in ApoE-/- mice, particularly at the higher doses. The areas of atherosclerotic lesions in the DXR groups were significantly smaller than those in the model group. DXR alleviated visfatin-induced VEC injury via downregulation of TNF-α, IL-6, ICAM-1 and VCAM-1 through mitogen-activated protein kinase pathways. CONCLUSION: DXR alleviated atherosclerosis injury via downregulation of visfatin expression and inhibition of the visfatin-induced inflammatory response in VECs.


Subject(s)
Atherosclerosis/drug therapy , Drugs, Chinese Herbal/administration & dosage , Nicotinamide Phosphoribosyltransferase/genetics , Animals , Aorta/drug effects , Aorta/immunology , Atherosclerosis/genetics , Atherosclerosis/immunology , Down-Regulation/drug effects , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nicotinamide Phosphoribosyltransferase/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...