Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.214
Filter
1.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824544

ABSTRACT

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Subject(s)
Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
2.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727309

ABSTRACT

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Subject(s)
Cholesterol , Endothelial Cells , Inflammation , Animals , Humans , Endothelial Cells/metabolism , Mice , Inflammation/pathology , Inflammation/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Arteries/metabolism , Arteries/pathology , Transcriptome/genetics , Aorta/metabolism , Aorta/pathology , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , I-kappa B Kinase/metabolism , Male , NF-kappa B/metabolism
3.
J Biomech ; 169: 112152, 2024 May.
Article in English | MEDLINE | ID: mdl-38763809

ABSTRACT

The healthy adult aorta is a remarkably resilient structure, able to resist relentless cardiac-induced and hemodynamic loads under normal conditions. Fundamental to such mechanical homeostasis is the mechano-sensitive cell signaling that controls gene products and thus the structural integrity of the wall. Mouse models have shown that smooth muscle cell-specific disruption of transforming growth factor-beta (TGFß) signaling during postnatal development compromises this resiliency, rendering the aortic wall susceptible to aneurysm and dissection under normal mechanical loading. By contrast, disruption of such signaling in the adult aorta appears to introduce a vulnerability that remains hidden under normal loading, but manifests under increased loading as experienced during hypertension. We present a multiscale (transcript to tissue) computational model to examine possible reasons for compromised mechanical homeostasis in the adult aorta following reduced TGFß signaling in smooth muscle cells.


Subject(s)
Aorta , Models, Cardiovascular , Signal Transduction , Transforming Growth Factor beta , Vascular Remodeling , Transforming Growth Factor beta/metabolism , Animals , Mice , Aorta/pathology , Aorta/metabolism , Vascular Remodeling/physiology , Computer Simulation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Humans
4.
BMC Cardiovasc Disord ; 24(1): 275, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807081

ABSTRACT

BACKGROUND: Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS: Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION: This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.


Subject(s)
Apoptosis , Atherosclerosis , Autophagy , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Aortic Diseases/metabolism , Mice, Inbred C57BL , Lipoproteins, LDL/metabolism , Male , Cells, Cultured , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Aorta/pathology , Aorta/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , Apolipoproteins E
5.
J Cell Mol Med ; 28(11): e18388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818612

ABSTRACT

Atherosclerosis, characterized by the accumulation of lipid plaques on the inner walls of arteries, is the leading cause of heart attack, stroke and severe ischemic injuries. Senescent cells have been found to accumulate within atherosclerotic lesions and contribute to the progression of atherosclerosis. In our previous study, we discovered that suppressing Larp7 accelerates senescence by inhibiting Sirt1 activity, resulting in increased atherosclerosis in high-fat diet (HFD) fed and ApoE deficient (ApoEKO) mice. However, there has been no direct evidence demonstrating Larp7 per se could attenuate atherosclerosis. To this end, we generated a tetO-controlled and Cre-activated Larp7 gain-of-function mouse. Through RT-PCR and western blotting, we confirmed Larp7 overexpression in the aortas of HFD-fed ApoEKO; Larp7tetO mice. Larp7 overexpression led to increased Sirt1 activity and decreased cellular senescence signals mediated by p53/p65 in the aortas. Additionally, Larp7 overexpression reduced the presence of p16-positive senescent cells in the aortic lesions. Furthermore, Larp7 overexpression resulted in a decrease in pro-inflammatory macrophages and SASP factors. Consequently, Larp7 overexpression led to a reduction in the area of atherosclerotic lesions in HFD-fed ApoEKO; Larp7tetO mice. In summary, our study provides evidence that Larp7 overexpression holds promise as an approach to inhibit cellular senescence and prevent atherosclerosis.


Subject(s)
Aorta , Atherosclerosis , Cellular Senescence , Ribonucleoproteins , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Mice , Cellular Senescence/genetics , Aorta/pathology , Aorta/metabolism , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Macrophages/metabolism , Male , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred C57BL
6.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38690748

ABSTRACT

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Subject(s)
Endothelium, Vascular , Ginsenosides , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors , Ginsenosides/pharmacology , Animals , Male , Mice , Rats , Peroxisome Proliferator-Activated Receptors/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Oxidative Stress/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aorta/drug effects , Aorta/metabolism , Nitric Oxide Synthase Type III/metabolism , Panax/chemistry , Diet, High-Fat
7.
Arterioscler Thromb Vasc Biol ; 44(6): 1379-1392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695167

ABSTRACT

BACKGROUND: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS: Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1ß or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS: Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1ß antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS: Taken together, IL-1ß appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.


Subject(s)
Atherosclerosis , Disease Models, Animal , Interleukin-1beta , Mice, Knockout, ApoE , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Animals , Interleukin-1beta/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/genetics , Mice , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Diet, Western , Mice, Inbred C57BL , Aorta/pathology , Aorta/metabolism , Aorta/drug effects , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Aortic Diseases/genetics , Aortic Diseases/metabolism , Diet, High-Fat , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Brachiocephalic Trunk/pathology , Brachiocephalic Trunk/metabolism , Brachiocephalic Trunk/drug effects
8.
Theranostics ; 14(6): 2427-2441, 2024.
Article in English | MEDLINE | ID: mdl-38646649

ABSTRACT

Background: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for efferocytosis, a process for the clearance of apoptotic cells. MerTK is mainly expressed in macrophages and immature dendritic cells. There are very limited reports focused on MerTK biology in aortic endothelial cells (ECs). It remains unclear for the role of blood flow patterns in regulating MerTK-mediated efferocytosis in aortic ECs. This study was designed to investigate whether endothelial MerTK and EC efferocytosis respond to blood flow patterns during atherosclerosis. Methods: Big data analytics, RNA-seq and proteomics combined with our in vitro and in vivo studies were applied to reveal the potential molecular mechanisms. Partial carotid artery ligation combined with AAV-PCSK9 and high fat diet were used to set up acute atherosclerosis in 4 weeks. Results: Our data showed that MerTK is sensitive to blood flow patterns and is inhibited by disturbed flow and oscillatory shear stress in primary human aortic ECs (HAECs). The RNA-seq data in HAECs incubated with apoptotic cells showed that d-flow promotes pro-inflammatory pathway and senescence pathway. Our in vivo data of proteomics and immunostaining showed that, compared with WT group, MerTK-/- aggravates atherosclerosis in d-flow areas through upregulation of endothelial dysfunction markers (e.g. IL-1ß, NF-κB, TLR4, MAPK signaling, vWF, VCAM-1 and p22phox) and mitochondrial dysfunction. Interestingly, MerTK-/-induces obvious abnormal endothelial thickening accompanied with decreased endothelial efferocytosis, promoting the development of atherosclerosis. Conclusions: Our data suggests that blood flow patterns play an important role in regulating MerTK-mediated efferocytosis in aortic ECs, revealing a new promising therapeutic strategy with EC efferocytosis restoration to against atherosclerosis.


Subject(s)
Aorta , Atherosclerosis , Endothelial Cells , Phagocytosis , c-Mer Tyrosine Kinase , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Humans , Endothelial Cells/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Mice , Apoptosis , Proto-Oncogene Mas , Male , Mice, Inbred C57BL , Diet, High-Fat , Cells, Cultured , Efferocytosis
9.
Nutrients ; 16(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38674863

ABSTRACT

Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7-8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%-Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•-, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats' livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = -0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats.


Subject(s)
Copper , Oxidative Stress , Rats, Wistar , Animals , Male , Copper/blood , Oxidative Stress/drug effects , Rats , Vasoconstriction/drug effects , Antioxidants/pharmacology , Vasodilation/drug effects , Dietary Supplements , Aorta/drug effects , Aorta/metabolism
10.
Atherosclerosis ; 392: 117519, 2024 May.
Article in English | MEDLINE | ID: mdl-38581737

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Subject(s)
Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
11.
Biol Pharm Bull ; 47(5): 955-964, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38644204

ABSTRACT

The occurrence of in-stent restenosis (ISR) poses a significant challenge for percutaneous coronary intervention (PCI). Thus, the promotion of vascular reendothelialization is essential to inhibit endothelial proliferation. In this study, we clarified the mechanism by which Detoxification and Activating Blood Circulation Decoction (DABCD) promotes vascular reendothelialization to avoid ISR by miRNA-126-mediated modulation of the vascular endothelial growth factor (VEGF) signaling pathway. A rat model of post-PCI restenosis was established by balloon injury. The injured aortic segment was collected 14 and 28 d after model establishment. Our findings indicate that on the 14th and 28th days following balloon injury, DABCD reduced intimal hyperplasia and inflammation and promoted vascular reendothelialization. Additionally, DABCD markedly increased nitric oxide (NO) expression and significantly decreased ET-1 production in rat serum. DABCD also increased the mRNA level of endothelial nitric oxide synthase (eNOS) and the protein expression of VEGF, p-Akt, and p-extracellular signal-regulated kinase (ERK)1/2 in vascular tissue. Unexpectedly, the expression of miR-126a-5p mRNA was significantly lower in the aortic tissue of balloon-injured rats than in the aortic tissue of control rats, and higher miR-126a-5p levels were observed in the DABCD groups. The results of this study indicated that the vascular reendothelialization effect of DABCD on arterial intimal injury is associated with the inhibition of neointimal formation and the enhancement of vascular endothelial activity. More specifically, the effects of DABCD were mediated, at least in part, through miR-126-mediated VEGF signaling pathway activation.


Subject(s)
MicroRNAs , Nitric Oxide Synthase Type III , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Coronary Restenosis/metabolism , Aorta/drug effects , Aorta/pathology , Aorta/metabolism
12.
J Physiol ; 602(9): 1939-1951, 2024 May.
Article in English | MEDLINE | ID: mdl-38606903

ABSTRACT

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Subject(s)
Atherosclerosis , Inflammation , Mice, Knockout , Proteoglycans , Receptors, LDL , Recombinant Proteins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Female , Proteoglycans/pharmacology , Proteoglycans/metabolism , Proteoglycans/genetics , Receptors, LDL/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Mice , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Macrophages/metabolism , Macrophages/drug effects , Foam Cells/metabolism , Foam Cells/drug effects
13.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38648679

ABSTRACT

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Subject(s)
Blood Pressure , Calcium , Metalloendopeptidases , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Calcium/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Male , Mice, Inbred C57BL , Hypotension/metabolism , Cells, Cultured , Aorta/metabolism , Aorta/cytology , Vasoconstriction/drug effects , Calcium Signaling
14.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674885

ABSTRACT

The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.


Subject(s)
Atherosclerosis , Fatty Acids , Interleukin-33 , Mice, Knockout , Animals , Interleukin-33/metabolism , Interleukin-33/genetics , Atherosclerosis/metabolism , Male , Mice , Fatty Acids/metabolism , Humans , Disease Models, Animal , Palmitic Acid/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Diet, High-Fat , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Endothelial Cells/metabolism , Mice, Knockout, ApoE , Lymphocytes/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/pathology , Immunity, Innate
15.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Male , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Signal Transduction , Sterol Esterase/metabolism , Sterol Esterase/genetics , Ubiquitination , Vasodilation/drug effects
16.
Pharmacology ; 109(3): 169-179, 2024.
Article in English | MEDLINE | ID: mdl-38583431

ABSTRACT

INTRODUCTION: Fisetin has been demonstrated to inhibit the occurrence of atherosclerosis; however, the mechanism of fisetin suppressing atherosclerosis remains elusive. METHODS: The function of fisetin in the inhibition of atherosclerosis was evaluated by hematoxylin and eosin and Oil Red O staining in ApoE-/- mice. Molecular biomarkers of atherosclerosis progression were detected by Western blot and qPCR. Moreover, the inhibition of atherosclerosis on oxidative stress and ferroptosis was evaluated by immunofluorescence staining, qPCR, and Western blot assays. RESULTS: The obtained results showed that serum lipid was attenuated and consequentially the formation of atherosclerosis was also suppressed by fisetin in ApoE-/- mice. Exploration of the mechanism revealed that molecular biomarkers of atherosclerosis were decreased under fisetin treatment. The level of reactive oxygen species and malondialdehyde declined, while the activity of superoxide dismutases and glutathione peroxidase was increased under the fisetin treatment. Additionally, the suppressor of ferroptosis, glutathione peroxidase 4 proteins, was elevated. The ferritin was decreased in the aortic tissues treated with fisetin. CONCLUSIONS: In summary, fisetin attenuated the formation of atherosclerosis through the inhibition of oxidative stress and ferroptosis in the aortic tissues of ApoE-/- mice.


Subject(s)
Apolipoproteins E , Atherosclerosis , Ferroptosis , Flavonols , Oxidative Stress , Animals , Flavonols/pharmacology , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Oxidative Stress/drug effects , Ferroptosis/drug effects , Mice , Male , Apolipoproteins E/genetics , Mice, Knockout , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Flavonoids/pharmacology , Mice, Knockout, ApoE , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Disease Models, Animal , Glutathione Peroxidase/metabolism
17.
BMC Cardiovasc Disord ; 24(1): 180, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532364

ABSTRACT

BACKGROUND: Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5ß1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5ß1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS: Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5ß1 and FAK was determined. Integrin α5ß1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5ß1 deficiency. RESULTS: The levels of integrin α5ß1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5ß1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5ß1-FAK might play an important role in the development of AAAD. CONCLUSIONS: Downregulation of integrin α5ß1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.


Subject(s)
Aortic Dissection , Integrin alpha5beta1 , Humans , Aorta/metabolism , Apoptosis , Integrin alpha5beta1/metabolism , Myocytes, Smooth Muscle/metabolism
18.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38438061

ABSTRACT

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Subject(s)
Myocardial Infarction , Valproic Acid , Rabbits , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Antioxidants , Myocardial Infarction/metabolism , Aorta/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism
19.
Sci Rep ; 14(1): 6959, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521811

ABSTRACT

Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.


Subject(s)
Aortic Aneurysm, Abdominal , Animals , Mice , Angiotensin II , Aorta/metabolism , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Dinoprostone/therapeutic use , Disease Models, Animal , Prostaglandin-E Synthases/genetics , Prostaglandins
20.
Cardiovasc Res ; 120(6): 658-670, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38454645

ABSTRACT

AIMS: Vascular calcification is highly prevalent in atherosclerosis, diabetes, and chronic kidney disease. It is associated with increased morbidity and mortality in patients with cardiovascular disease. Matrix metalloproteinase 3 (MMP-3), also known as stromelysin-1, is part of the large matrix metalloproteinase family. It can degrade extracellular matrix components of the arterial wall including elastin, which plays a central role in medial calcification. In this study, we sought to determine the role of MMP-3 in medial calcification. METHODS AND RESULTS: We found that MMP-3 was increased in rodent models of medial calcification as well as in vascular smooth muscle cells (SMCs) cultured in a phosphate calcification medium. It was also highly expressed in calcified tibial arteries in patients with peripheral arterial disease (PAD). Knockdown and inhibition of MMP-3 suppressed phosphate-induced SMC osteogenic transformation and calcification, whereas the addition of a recombinant MMP-3 protein facilitated SMC calcification. In an ex vivo organ culture model and a rodent model of medial calcification induced by vitamin D3, we found that MMP-3 deficiency significantly suppressed medial calcification in the aorta. We further found that medial calcification and osteogenic transformation were significantly reduced in SMC-specific MMP-3-deficient mice, suggesting that MMP-3 in SMCs is an important factor in this process. CONCLUSION: These findings suggest that MMP-3 expression in vascular SMCs is an important regulator of medial calcification and that targeting MMP-3 could provide a therapeutic strategy to reduce it and address its consequences in patients with PAD.


Subject(s)
Gene Deletion , Matrix Metalloproteinase 3 , Vascular Calcification , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Matrix Metalloproteinase 3/deficiency , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Vascular Calcification/enzymology , Vascular Calcification/genetics , Disease Models, Animal , Muscle, Smooth, Vascular/cytology , Humans , Recombinant Proteins/pharmacology , Aorta/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...