Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Cell Rep ; 43(5): 114155, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678563

ABSTRACT

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.


Subject(s)
CDC2 Protein Kinase , Cell Cycle , Protein Phosphatase 2 , Animals , Anaphase-Promoting Complex-Cyclosome/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , CDC2 Protein Kinase/metabolism , Cdc20 Proteins/metabolism , Mitosis , Phosphorylation , Protein Phosphatase 2/metabolism , Sf9 Cells , Xenopus
2.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629076

ABSTRACT

Genome-wide association studies (GWAS) are one of the most common approaches to identify genetic loci that are associated with bone mineral density (BMD). Such novel genetic loci represent new potential targets for the prevention and treatment of fragility fractures. GWAS have identified hundreds of associations with BMD; however, only a few have been functionally evaluated. A locus significantly associated with femoral neck BMD at the genome-wide level is intronic SNP rs17040773 located in the intronic region of the anaphase-promoting complex subunit 1 (ANAPC1) gene (p = 1.5 × 10-9). Here, we functionally evaluate the role of ANAPC1 in bone remodelling by examining the expression of ANAPC1 in human bone and muscle tissues and during the osteogenic differentiation of human primary mesenchymal stem cells (MSCs). The expression of ANAPC1 was significantly decreased 2.3-fold in bone tissues and 6.2-fold in muscle tissue from osteoporotic patients as compared to the osteoarthritic and control tissues. Next, we show that the expression of ANAPC1 changes during the osteogenic differentiation process of human MSCs. Moreover, the silencing of ANAPC1 in human osteosarcoma (HOS) cells reduced RUNX2 expression, suggesting that ANAPC1 affects osteogenic differentiation through RUNX2. Altogether, our results indicate that ANAPC1 plays a role in bone physiology and in the development of osteoporosis.


Subject(s)
Bone Neoplasms , Osteoporosis , Humans , Bone Density/genetics , Core Binding Factor Alpha 1 Subunit , Anaphase , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome , Genome-Wide Association Study , Osteogenesis/genetics , Osteoporosis/genetics
3.
Molecules ; 27(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956818

ABSTRACT

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Mitosis , Protein Processing, Post-Translational , Ubiquitin , Antibodies/genetics , Antibodies/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mitosis/genetics , Mitosis/physiology , Phosphorylation , Protein Binding/genetics , Protein Binding/physiology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Serine/genetics , Serine/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Polo-Like Kinase 1
4.
J Leukoc Biol ; 112(4): 919-929, 2022 10.
Article in English | MEDLINE | ID: mdl-35363385

ABSTRACT

T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are characterized by inferior treatment effects, high heterogeneity, poor prognosis, and a lack of specific therapeutic targets and drugs to improve outcome. Disulfiram (DSF) is a drug used to clinically control alcoholism that has recently been shown to be cytotoxic for multiple cancers. However, the underlying effects and mechanisms of DFS treatment in patients with T-cell malignancies are not well characterized. In this study, we report that DSF promotes apoptosis and inhibits the proliferation of malignant T-cell cell lines and primary T-ALL cells. We provide evidence that DSF exerts anticancer activity in T-cell malignancies by targeting the NPL4-mediated ubiquitin-proteasome pathway. Notably, high expression of NPL4 and 2 ubiquitin-proteasome pathway genes, anaphase-promoting complex subunit 1 (ANAPC1) and proteasome 26S subunit ubiquitin receptor, non-ATPase 2 (PSMD2), was significantly associated with unfavorable overall survival (OS) for patients with TCL and T-ALL (p < 0.05). More importantly, the weighted combination of NPL4, ANAPC1, and PSMD2 could visually display the 1-, 3-, and 5-year OS rates for patients with T-cell malignancies in a nomogram model and facilitate risk stratification. Specifically, risk stratification was an independent predictor of OS for patients with T-cell malignancies. In conclusion, DSF might induce apoptosis and inhibit the proliferation of malignant T-cells via the NPL4-mediated ubiquitin-proteasome pathway and offer a potential therapeutic option for T-cell malignancies.


Subject(s)
Disulfiram , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome , Disulfiram/pharmacology , Disulfiram/therapeutic use , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proteasome Endopeptidase Complex , T-Lymphocytes , Ubiquitins
5.
EMBO J ; 40(18): e107516, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34291488

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin-dependent kinase 1 (Cdk1) promotes Cdc20 co-activator loading in mitosis to form active APC/C-Cdc20. However, detailed phospho-regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo-like kinase (Plx1) and PP2A-B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1-loop500 ) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1-loop500 in a phosphorylation-dependent manner and promotes the formation of APC/C-Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A-B56 is recruited to the Apc1-loop500 and differentially promotes dissociation of Plx1 and PP2A-B56 through dephosphorylation of Plx1-binding sites. Stable Plx1 binding, which prevents PP2A-B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1-loop500 is controlled by distant Apc3-loop phosphorylation. Our study suggests that phosphorylation-dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Mitosis/physiology , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Humans , Phosphorylation , Protein Binding , Polo-Like Kinase 1
6.
J Virol ; 95(15): e0097120, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011540

ABSTRACT

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , HIV Infections/pathology , HIV-1/growth & development , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Virus Replication/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints/genetics , HEK293 Cells , HIV-1/metabolism , HeLa Cells , Humans , Macrophages/virology , RNA Interference , RNA, Small Interfering/genetics , Tandem Mass Spectrometry , vpr Gene Products, Human Immunodeficiency Virus/genetics
7.
Mol Biol Cell ; 31(8): 725-740, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31995441

ABSTRACT

E2F8 is a transcriptional repressor that antagonizes E2F1 at the crossroads of the cell cycle, apoptosis, and cancer. Previously, we discovered that E2F8 is a direct target of the APC/C ubiquitin ligase. Nevertheless, it remains unknown how E2F8 is dynamically controlled throughout the entirety of the cell cycle. Here, using newly developed human cell-free systems that recapitulate distinct inter-mitotic and G1 phases and a continuous transition from prometaphase to G1, we reveal an interlocking dephosphorylation switch coordinating E2F8 degradation with mitotic exit and the activation of APC/CCdh1. Further, we uncover differential proteolysis rates for E2F8 at different points within G1 phase, accounting for its accumulation in late G1 while APC/CCdh1 is still active. Finally, we demonstrate that the F-box protein Cyclin F regulates E2F8 in G2-phase. Altogether, our data define E2F8 regulation throughout the cell cycle, illuminating an extensive coordination between phosphorylation, ubiquitination and transcription in mammalian cell cycle.


Subject(s)
Cell Cycle/physiology , Repressor Proteins/metabolism , Amino Acid Motifs , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell-Free System , Cyclins/metabolism , E2F1 Transcription Factor/metabolism , G1 Phase/physiology , G2 Phase/physiology , HeLa Cells , Humans , Mitosis/physiology , Phosphorylation , Protein Processing, Post-Translational , Proteolysis , Recombinant Proteins/metabolism , Ubiquitination
8.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31303264

ABSTRACT

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Mutation , Rothmund-Thomson Syndrome/genetics , Humans
9.
Nat Commun ; 10(1): 1284, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894546

ABSTRACT

The corneal endothelium is vital for transparency and proper hydration of the cornea. Here, we conduct a genome-wide association study of corneal endothelial cell density (cells/mm2), coefficient of cell size variation (CV), percentage of hexagonal cells (HEX) and central corneal thickness (CCT) in 6,125 Icelanders and find associations at 10 loci, including 7 novel. We assess the effects of these variants on various ocular biomechanics such as corneal hysteresis (CH), as well as eye diseases such as glaucoma and corneal dystrophies. Most notably, an intergenic variant close to ANAPC1 (rs78658973[A], frequency = 28.3%) strongly associates with decreased cell density and accounts for 24% of the population variance in cell density (ß = -0.77 SD, P = 1.8 × 10-314) and associates with increased CH (ß = 0.19 SD, P = 2.6 × 10-19) without affecting risk of corneal diseases and glaucoma. Our findings indicate that despite correlations between cell density and eye diseases, low cell density does not increase the risk of disease.


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Corneal Dystrophies, Hereditary/genetics , Endothelium, Corneal/metabolism , Glaucoma/genetics , Polymorphism, Genetic , Adult , Aged , Aged, 80 and over , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Case-Control Studies , Cell Count , Cell Size , Corneal Dystrophies, Hereditary/diagnosis , Corneal Dystrophies, Hereditary/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Corneal/pathology , Female , Gene Expression , Gene Expression Profiling , Genetic Loci , Genome-Wide Association Study , Glaucoma/diagnosis , Glaucoma/pathology , Humans , Intraocular Pressure , Male , Middle Aged , Whole Genome Sequencing
10.
PLoS Genet ; 14(4): e1007339, 2018 04.
Article in English | MEDLINE | ID: mdl-29641560

ABSTRACT

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.


Subject(s)
Armadillo Domain Proteins/metabolism , Axin Signaling Complex/metabolism , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , Animals, Genetically Modified , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Axin Protein/chemistry , Axin Protein/genetics , Axin Protein/metabolism , Axin Signaling Complex/chemistry , Axin Signaling Complex/genetics , Cell Line , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism
11.
Gene ; 641: 297-302, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29111205

ABSTRACT

Wnt signaling plays important roles in differentiation, morphogenesis and development. This signaling pathway is highly regulated at all levels and microRNAs are small noncoding RNAs regulating Wnt signaling. Here, we intended to investigate hsa-miR-11181 (a novel miRNA located in TrkC gene) effect on Wnt signaling pathway in SW480 cell line. TOP/FOP flash assay indicated up-regulation of Wnt signaling, following the overexpression of hsa-miR-11181, verified through RT-qPCR. Bioinformatics analysis predicted APC1, APC2 and Axin1 might be targeted by hsa-miR-11181. Then, RT-qPCR analysis indicated that APC2 and Axin1 have been significantly down-regulated following the hsa-miR-11181 overexpression. However dual luciferase assay analysis supported only APC2 3'-UTR is directly targeted by this miRNA. Then, treatment of SW480 cells with Wnt-inhibitory small molecules supported the effect of hsa-miR-11181 at the inhibitory complex level containing APC2 protein. Consistently, viability of SW480 cells overexpressing hsa-miR-11181 was significantly elevated, measured through MTT assay. Overall, these results suggest that hsa-miR-11181 may play a crucial role in Wnt signaling regulation and confirmed that APC2 3'-UTR is targeted by hsa-miR-11181 and propose the presence of its recognition sites in the promoter or coding regions of Axin1 gene.


Subject(s)
Cytoskeletal Proteins/genetics , MicroRNAs/genetics , Wnt Signaling Pathway/genetics , 3' Untranslated Regions/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Axin Protein/genetics , Cell Line , Down-Regulation/genetics , HEK293 Cells , Humans , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics , Receptor, trkC
12.
Cancer Res ; 78(3): 617-630, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29212857

ABSTRACT

APC biallelic loss-of-function mutations are the most prevalent genetic changes in colorectal tumors, but it is unknown whether these mutations phenocopy gain-of-function mutations in the CTNNB1 gene encoding ß-catenin that also activate canonical WNT signaling. Here we demonstrate that these two mutational mechanisms are not equivalent. Furthermore, we show how differences in gene expression produced by these different mechanisms can stratify outcomes in more advanced human colorectal cancers. Gene expression profiling in Apc-mutant and Ctnnb1-mutant mouse colon adenomas identified candidate genes for subsequent evaluation of human TCGA (The Cancer Genome Atlas) data for colorectal cancer outcomes. Transcriptional patterns exhibited evidence of activated canonical Wnt signaling in both types of adenomas, with Apc-mutant adenomas also exhibiting unique changes in pathways related to proliferation, cytoskeletal organization, and apoptosis. Apc-mutant adenomas were characterized by increased expression of the glial nexin Serpine2, the human ortholog, which was increased in advanced human colorectal tumors. Our results support the hypothesis that APC-mutant colorectal tumors are transcriptionally distinct from APC-wild-type colorectal tumors with canonical WNT signaling activated by other mechanisms, with possible implications for stratification and prognosis.Significance: These findings suggest that colon adenomas driven by APC mutations are distinct from those driven by WNT gain-of-function mutations, with implications for identifying at-risk patients with advanced disease based on gene expression patterns. Cancer Res; 78(3); 617-30. ©2017 AACR.


Subject(s)
Adenoma/mortality , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/physiology , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/mortality , Mutation , Wnt Proteins/metabolism , beta Catenin/physiology , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis , Survival Rate , Wnt Proteins/genetics
13.
J Biol Chem ; 293(4): 1178-1191, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29183995

ABSTRACT

The Hippo pathway plays important roles in controlling organ size and in suppressing tumorigenesis through large tumor suppressor kinase 1/2 (LATS1/2)-mediated phosphorylation of YAP/TAZ transcription co-activators. The kinase activity of LATS1/2 is regulated by phosphorylation in response to extracellular signals. Moreover, LATS2 protein levels are repressed by the ubiquitin-proteasome system in conditions such as hypoxia. However, the mechanism that removes the ubiquitin modification from LATS2 and thereby stabilizes the protein is not well understood. Here, using tandem affinity purification (TAP), we found that anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase complex, and USP9X, a deubiquitylase, specifically interact with LATS2. We also found that although APC1 co-localizes with LATS2 to intracellular vesicle structures, it does not regulate LATS2 protein levels and activity. In contrast, USP9X ablation drastically diminished LATS2 protein levels. We further demonstrated that USP9X deubiquitinates LATS2 and thus prevents LATS2 degradation by the proteasome. Furthermore, in pancreatic cancer cells, USP9X loss activated YAP and enhanced the oncogenic potential of the cells. In addition, the tumorigenesis induced by the USP9X ablation depended not only on LATS2 repression, but also on YAP/TAZ activity. We conclude that USP9X is a deubiquitylase of the Hippo pathway kinase LATS2 and that the Hippo pathway functions as a downstream signaling cascade that mediates USP9X's tumor-suppressive activity.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Neoplasms/enzymology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Enzyme Stability , HEK293 Cells , HeLa Cells , Hippo Signaling Pathway , Humans , Neoplasms/genetics , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Proteolysis , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
14.
Sci Rep ; 7: 45383, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28350015

ABSTRACT

Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.


Subject(s)
Antiporters/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Antiporters/genetics , Calcium-Binding Proteins/genetics , Humans , Mitochondrial Proteins/genetics , Protein Domains/genetics , Saccharomyces cerevisiae/genetics , Signal Transduction/physiology
15.
Proc Natl Acad Sci U S A ; 113(38): 10547-52, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601667

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/chemistry , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Cadherins/chemistry , Cell Cycle Proteins/chemistry , Mutant Proteins/chemistry , Allosteric Regulation/genetics , Anaphase-Promoting Complex-Cyclosome/genetics , Antigens, CD , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Binding Sites , Cadherins/genetics , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Humans , Mutant Proteins/genetics , Protein Binding , Protein Conformation , Protein Domains , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , WD40 Repeats/genetics
16.
Nature ; 533(7602): 260-264, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27120157

ABSTRACT

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Mitosis , Phosphoproteins/metabolism , Amino Acid Motifs , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/ultrastructure , Antigens, CD , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apoenzymes/metabolism , Binding Sites , Cadherins/chemistry , Cadherins/metabolism , Cadherins/ultrastructure , Cdc20 Proteins/antagonists & inhibitors , Cdc20 Proteins/chemistry , Cdc20 Proteins/metabolism , Cdc20 Proteins/ultrastructure , Cryoelectron Microscopy , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Enzyme Activation , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/ultrastructure , Phosphorylation , Protein Binding , Protein Conformation , Tosylarginine Methyl Ester/pharmacology
17.
Science ; 352(6289): 1121-4, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27103671

ABSTRACT

Error-free genome duplication and segregation are ensured through the timely activation of ubiquitylation enzymes. The anaphase-promoting complex or cyclosome (APC/C), a multisubunit E3 ubiquitin ligase, is regulated by phosphorylation. However, the mechanism remains elusive. Using systematic reconstitution and analysis of vertebrate APC/Cs under physiological conditions, we show how cyclin-dependent kinase 1 (CDK1) activates the APC/C through coordinated phosphorylation between Apc3 and Apc1. Phosphorylation of the loop domains by CDK1 in complex with p9/Cks2 (a CDK regulatory subunit) controlled loading of coactivator Cdc20 onto APC/C. A phosphomimetic mutation introduced into Apc1 allowed Cdc20 to increase APC/C activity in interphase. These results define a previously unrecognized subunit-subunit communication over a distance and the functional consequences of CDK phosphorylation. Cdc20 is a potential therapeutic target, and our findings may facilitate the development of specific inhibitors.


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cdh1 Proteins/metabolism , Anaphase , Animals , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Cdc20 Proteins/metabolism , Enzyme Activation , Humans , Mutation , Phosphorylation , Xenopus
18.
J Appl Physiol (1985) ; 120(1): 29-37, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26494443

ABSTRACT

Cancer cachexia is characterized by the progressive loss of skeletal muscle mass. While mouse skeletal muscle's response to an acute bout of stimulated low-frequency concentric muscle contractions is disrupted by cachexia, gaps remain in our understanding of cachexia's effects on eccentric contraction-induced muscle growth. The purpose of this study was to determine whether repeated bouts of stimulated high-frequency eccentric muscle contractions [high-frequency electrical muscle stimulation (HFES)] could stimulate myofiber growth during cancer cachexia progression, and whether this training disrupted muscle signaling associated with wasting. Male Apc(Min/+) mice initiating cachexia (N = 9) performed seven bouts of HFES-induced eccentric contractions of the left tibialis anterior muscle over 2 wk. The right tibialis anterior served as the control, and mice were killed 48 h after the last stimulation. Age-matched C57BL/6 mice (N = 9) served as wild-type controls. Apc(Min/+) mice lost body weight, muscle mass, and type IIA, IIX, and IIB myofiber cross-sectional area. HFES increased myofiber cross-sectional area of all fiber types, regardless of cachexia. Cachexia increased muscle noncontractile tissue, which was attenuated by HFES. Cachexia decreased the percentage of high succinate dehydrogenase activity myofibers, which was increased by HFES, regardless of cachexia. While cachexia activated AMP kinase, STAT3, and ERK1/2 signaling, HFES decreased AMP kinase phosphorylation, independent of the suppression of STAT3. These results demonstrate that cachectic skeletal muscle can initiate a growth response to repeated eccentric muscle contractions, despite the presence of a systemic cachectic environment.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal , Neoplasms, Experimental/physiopathology , Anatomy, Cross-Sectional , Animals , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Body Weight , Cachexia/pathology , Cachexia/physiopathology , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/physiopathology , Electric Stimulation , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/growth & development , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , Organ Size , Physical Conditioning, Animal , Signal Transduction , Succinate Dehydrogenase/metabolism
19.
Neurochem Int ; 91: 26-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26498254

ABSTRACT

Reactive astrocyte proliferation is involved in many central degenerative diseases. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), an allosteric activator of 6-phosphofructo-1-kinase (PFK1), controls glycolytic flux. Furthermore, APC/C-Cdh1 plays a crucial role in brain metabolism by regulating PFKFB3 expression. Previous studies have defined the roles of PFKFB3-mediated glycolysis in pathological angiogenesis, cell autophagy, and amyloid plaque deposition in proliferating cells. However, the role of PFKFB3 in reactive astrocyte proliferation after cerebral ischemia is unknown. In this study, we cultured rat primary cortical astrocytes and established an oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic cerebral ischemia in vivo. Astrocyte proliferation was measured by western blotting for proliferating cell nuclear antigen (PCNA) and by EdU incorporation. We found that OGD/R up-regulated PFKFB3 and PFK1 expression, which was accompanied by reactive astrocyte proliferation. Knockdown of PFKFB3 by siRNA transfection significantly inhibited reactive astrocyte proliferation and lactate release, an indicator of glycolysis. We found that PFKFB3 and PFK1 expression were down-regulated and lactate release was decreased when OGD/R-induced astrocyte proliferation was inhibited by a Cdh1-expressing lentivirus. Thus, reactive astrocyte proliferation can be effectively suppressed by down-regulation of PFKFB3 through control of glycolytic flux, which is downstream of APC/C-Cdh1.


Subject(s)
Astrocytes/metabolism , Cadherins/metabolism , Cell Proliferation , Glycolysis , Phosphofructokinase-2/metabolism , Reperfusion Injury/metabolism , Animals , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cadherins/biosynthesis , Cadherins/genetics , Cell Hypoxia , Gene Knockdown Techniques , Glucose/deficiency , Lactic Acid/metabolism , Phosphofructokinase-2/biosynthesis , Phosphofructokinase-2/genetics , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley
20.
Sci Signal ; 8(392): ra87, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26329581

ABSTRACT

The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Proliferation , Melanocytes/metabolism , Melanoma/metabolism , Neoplasm Proteins/metabolism , Paired Box Transcription Factors/metabolism , Proteolysis , Animals , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Cell Line, Tumor , Humans , Melanocytes/pathology , Melanoma/genetics , Melanoma/pathology , Mice , Neoplasm Proteins/genetics , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...