Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 674
Filter
1.
J Biol Chem ; 299(9): 105152, 2023 09.
Article in English | MEDLINE | ID: mdl-37567475

ABSTRACT

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Subject(s)
Coenzymes , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferases , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Transferases/chemistry , Transferases/metabolism , Protein Conformation , Coenzymes/metabolism , Vitamin B 6/biosynthesis , Thiamine/biosynthesis , Apoenzymes/chemistry , Apoenzymes/metabolism , Thiamine Pyrophosphate/metabolism , Catalytic Domain , Drug Resistance, Bacterial
2.
Nat Commun ; 12(1): 4848, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381037

ABSTRACT

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Subject(s)
Methyltransferases/chemistry , RNA Helicases/chemistry , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
3.
Nature ; 596(7873): 603-607, 2021 08.
Article in English | MEDLINE | ID: mdl-34381213

ABSTRACT

Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.


Subject(s)
Cryoelectron Microscopy , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/ultrastructure , Tetrahymena thermophila , Apoenzymes/chemistry , Apoenzymes/ultrastructure , Holoenzymes/chemistry , Holoenzymes/ultrastructure , Models, Molecular , Tetrahymena thermophila/enzymology , Tetrahymena thermophila/genetics
5.
Proteins ; 89(9): 1216-1225, 2021 09.
Article in English | MEDLINE | ID: mdl-33983654

ABSTRACT

The main protease Mpro , 3CLpro is an important target from coronaviruses. In spite of having 96% sequence identity among Mpros from SARS-CoV-1 and SARS-CoV-2; the inhibitors used to block the activity of SARS-CoV-1 Mpro so far, were found to have differential inhibitory effect on Mpro of SARS-CoV-2. The possible reason could be due to the difference of few amino acids among the peptidases. Since, overall 3-D crystallographic structure of Mpro from SARS-CoV-1 and SARS-CoV-2 is quite similar and mapping a subtle structural variation is seemingly impossible. Hence, we have attempted to study a structural comparison of SARS-CoV-1 and SARS-CoV-2 Mpro in apo and inhibitor bound states using protein structure network (PSN) based approach at contacts level. The comparative PSNs analysis of apo Mpros from SARS-CoV-1 and SARS-CoV-2 uncovers small but significant local changes occurring near the active site region and distributed throughout the structure. Additionally, we have shown how inhibitor binding perturbs the PSG and the communication pathways in Mpros . Moreover, we have also investigated the network connectivity on the quaternary structure of Mpro and identified critical residue pairs for complex formation using three centrality measurement parameters along with the modularity analysis. Taken together, these results on the comparative PSN provide an insight into conformational changes that may be used as an additional guidance towards specific drug development.


Subject(s)
Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Apoenzymes/antagonists & inhibitors , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Holoenzymes/chemistry , Holoenzymes/metabolism , Models, Molecular , Protease Inhibitors/pharmacology , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects
6.
Nucleic Acids Res ; 49(17): 9607-9624, 2021 09 27.
Article in English | MEDLINE | ID: mdl-33880546

ABSTRACT

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2'-PO4 to NAD+ yielding RNA 2'-OH and ADP-ribose-1',2'-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 µM), ADP-ribose (∼96 µM) and ADP (∼123 µM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2'-PO4 (mimicking the substrate RNA 2'-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ ß-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.


Subject(s)
Bacterial Proteins/chemistry , Cytophagaceae/enzymology , NAD/chemistry , Phosphotransferases/chemistry , Apoenzymes/chemistry , Bacterial Proteins/genetics , Binding Sites , Ligands , Models, Molecular , Mutagenesis , Nuclear Magnetic Resonance, Biomolecular , Nucleotides/chemistry , Phosphotransferases/genetics , Protein Binding , Protein Conformation , RNA/metabolism
7.
Biochem Biophys Res Commun ; 553: 85-91, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33765558

ABSTRACT

Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway. The reaction catalyzed by the enzyme is considered to be the main source of reducing power for nicotinamide adenine dinucleotide phosphate (NADPH) and is a precursor of 5-carbon sugar used by cells. To uncover the structural features of the enzyme, we determined the crystal structures of glucose-6-phosphate dehydrogenase from Kluyveromyces lactis (KlG6PD) in both the apo form and a binary complex with its substrate glucose-6-phosphate. KlG6PD contains a Rossman-like domain for cofactor NADPH binding; it also presents a typical antiparallel ß sheet at the C-terminal domain with relatively the same pattern as those of other homologous structures. Moreover, our structural and biochemical analyses revealed that Lys153 contributes significantly to substrate G6P recognition. This study may provide insights into the structural variation and catalytic features of the G6PD enzyme.


Subject(s)
Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Kluyveromyces/enzymology , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Glucosephosphate Dehydrogenase/genetics , Kinetics , Models, Molecular , Mutagenesis , Structure-Activity Relationship , Substrate Specificity
8.
FEBS J ; 288(19): 5723-5736, 2021 10.
Article in English | MEDLINE | ID: mdl-33783128

ABSTRACT

Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed ß-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.


Subject(s)
Apoenzymes/ultrastructure , Halobacteriaceae/ultrastructure , Hexosyltransferases/ultrastructure , Protein Conformation , Apoenzymes/chemistry , Archaea/enzymology , Archaea/ultrastructure , Crystallography, X-Ray , Halobacteriaceae/enzymology , Hexosyltransferases/chemistry , Protein Folding , Sucrose/chemistry , Trisaccharides/chemistry
9.
Biochem J ; 478(4): 943-959, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33565573

ABSTRACT

Members of the glycoside hydrolase family 4 (GH4) employ an unusual glycosidic bond cleavage mechanism utilizing NAD(H) and a divalent metal ion, under reducing conditions. These enzymes act upon a diverse range of glycosides, and unlike most other GH families, homologs here are known to accommodate both α- and ß-anomeric specificities within the same active site. Here, we report the catalytic properties and the crystal structures of TmAgu4B, an α-d-glucuronidase from the hyperthermophile Thermotoga maritima. The structures in three different states include the apo form, the NADH bound holo form, and the ternary complex with NADH and the reaction product d-glucuronic acid, at 2.15, 1.97 and 1.85 Šresolutions, respectively. These structures reveal the step-wise route of conformational changes required in the active site to achieve the catalytically competent state, and illustrate the direct role of residues that determine the reaction mechanism. Furthermore, a structural transition of a helical region in the active site to a turn geometry resulting in the rearrangement of a unique arginine residue governs the exclusive glucopyranosiduronic acid recognition in TmAgu4B. Mutational studies show that modifications of the glycone binding site geometry lead to catalytic failure and indicate overlapping roles of specific residues in catalysis and substrate recognition. The data highlight hitherto unreported molecular features and associated active site dynamics that determine the structure-function relationships within the unique GH4 family.


Subject(s)
Bacterial Proteins/chemistry , Apoenzymes/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Dithiothreitol/metabolism , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Glycoside Hydrolases/metabolism , Holoenzymes/chemistry , Kinetics , Manganese/metabolism , Models, Molecular , Multigene Family , Mutagenesis, Site-Directed , NAD/metabolism , Protein Binding , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Thermotoga maritima/enzymology , Thermotoga maritima/genetics
10.
Int J Biol Macromol ; 165(Pt B): 2349-2362, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33098904

ABSTRACT

NAD synthetase (NadE) catalyzes the last step in NAD biosynthesis, transforming deamido-NAD+ into NAD+ by a two-step reaction with co-substrates ATP and amide donor ammonia. In this study, we report the crystal structure of Staphylococcus aureus NAD synthetase enzyme (saNadE) at 2.3 Å resolution. We used this structure to perform molecular dynamics simulations of apo-enzyme, enzyme-substrate (NadE with ATP and NaAD) and enzyme-intermediate complexes (NadE with NaAD-AMP) to investigate key binding interactions and explore the conformational transitions and flexibility of the binding pocket. Our results show large shift of N-terminal region in substrate bound form which is important for ATP binding. Substrates drive the correlated movement of loop regions surrounding it as well as some regions distal to the active site and stabilize them at complex state. Principal component analysis of atomic projections distinguish feasible trajectories to delineate distinct motions in enzyme-substrate to enzyme-intermediate states. Our results suggest mixed binding involving dominant induced fit and conformational selection. MD simulation extracted ensembles of NadE could potentially be utilized for in silico screening and structure based design of more effective Methicillin Resistant Staphylococcus aureus (MRSA) inhibitors.


Subject(s)
Amide Synthases/chemistry , Crystallography, X-Ray , Methicillin-Resistant Staphylococcus aureus/enzymology , Molecular Dynamics Simulation , Apoenzymes/chemistry , Catalytic Domain , Enzyme Stability , Humans , Hydrogen Bonding , NAD/biosynthesis , Principal Component Analysis , Protein Conformation , Protein Subunits/chemistry , Substrate Specificity
11.
Int J Biol Macromol ; 165(Pt A): 205-213, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32991904

ABSTRACT

The antioxidant and antibacterial activities of camel and bovine α-lactalbumin (α-La) in both calcium-loaded (holo) and calcium-depleted (apo) forms were investigated and compared. Antioxidant assay showed that camel and bovine α-La exhibited significant Ferric-reducing antioxidant power (FRAP), ferrous iron-chelating activity (FCA) and antiradical activities especially in their apo form. Camel apo α-La also exhibited attractive antibacterial activities against Gram-negative bacteria (Pseudomonas aeruginosa) and against fungal pathogens species (Penicillium bilaiae, Aspergillus tamari and Aspergillus sclerotiorum). Likewise, emulsifying properties (emulsification ability (EAI) and stability (ESI) indexes) and the surface characteristics (surface hydrophobicity, ζ-potential and interfacial tension) of the α-La were assessed. Maximum EAI were found at pH 7.0, with higher EAI values for the camel apo α-La (EAI ~19.5 m2/g). This behavior was explained by its relative high surface hydrophobicity and its greater efficiency to reduce the surface tension at the oil-water interface. Furthermore, emulsions were found to be more stable at pH 7.0 compared to pH 5.0 (ESI ~50%) due to the higher electrostatic repulsive forces between oil droplets at pH 7.0 in consistence with the ζ-potential results. This study concluded that the camel apo α-La has antibacterial, antioxidant, and emulsifying properties in agricultural and food industries.


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Lactalbumin/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Apoenzymes/chemistry , Apoenzymes/isolation & purification , Aspergillus/drug effects , Camelus , Cattle , Emulsions/chemistry , Emulsions/pharmacology , Holoenzymes/chemistry , Holoenzymes/isolation & purification , Hydrophobic and Hydrophilic Interactions/drug effects , Lactalbumin/isolation & purification , Lactalbumin/pharmacology , Penicillium/drug effects
12.
Nature ; 579(7800): 615-619, 2020 03.
Article in English | MEDLINE | ID: mdl-32214249

ABSTRACT

Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health1-4. These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome5. Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5'-viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases6,7. Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.


Subject(s)
Arenaviruses, New World/enzymology , Cryoelectron Microscopy , Lassa virus/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/ultrastructure , Virus Replication , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoenzymes/ultrastructure , Arenaviruses, New World/ultrastructure , Catalytic Domain , Lassa virus/ultrastructure , Lymphocytic choriomeningitis virus/enzymology , Lymphocytic choriomeningitis virus/ultrastructure , Models, Molecular , Promoter Regions, Genetic/genetics , RNA-Dependent RNA Polymerase/metabolism
13.
Protein Eng Des Sel ; 32(2): 77-85, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31832682

ABSTRACT

Intracellular aggregates of superoxide dismutase 1 (SOD1) are associated with amyotrophic lateral sclerosis. In vivo, aggregation occurs in a complex and dense molecular environment with chemically heterogeneous surfaces. To investigate how SOD1 fibril formation is affected by surfaces, we used an in vitro model system enabling us to vary the molecular features of both SOD1 and the surfaces, as well as the surface area. We compared fibril formation in hydrophilic and hydrophobic sample wells, as a function of denaturant concentration and extraneous hydrophobic surface area. In the presence of hydrophobic surfaces, SOD1 unfolding promotes fibril nucleation. By contrast, in the presence of hydrophilic surfaces, increasing denaturant concentration retards the onset of fibril formation. We conclude that the mechanism of fibril formation depends on the surrounding surfaces and that the nucleating species might correspond to different conformational states of SOD1 depending on the nature of these surfaces.


Subject(s)
Amyloid/chemistry , Biocatalysis , Hydrophobic and Hydrophilic Interactions , Protein Aggregates , Protein Unfolding , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , Adsorption , Apoenzymes/chemistry , Apoenzymes/metabolism , Disulfides/chemistry , Surface Properties
14.
Nature ; 575(7783): 540-544, 2019 11.
Article in English | MEDLINE | ID: mdl-31723264

ABSTRACT

Transposons have had a pivotal role in genome evolution1 and are believed to be the evolutionary progenitors of the RAG1-RAG2 recombinase2, an essential component of the adaptive immune system in jawed vertebrates3. Here we report one crystal structure and five cryo-electron microscopy structures of Transib4,5, a RAG1-like transposase from Helicoverpa zea, that capture the entire transposition process from the apo enzyme to the terminal strand transfer complex with transposon ends covalently joined to target DNA, at resolutions of 3.0-4.6 Å. These structures reveal a butterfly-shaped complex that undergoes two cycles of marked conformational changes in which the 'wings' of the transposase unfurl to bind substrate DNA, close to execute cleavage, open to release the flanking DNA and close again to capture and attack target DNA. Transib possesses unique structural elements that compensate for the absence of a RAG2 partner, including a loop that interacts with the transposition target site and an accordion-like C-terminal tail that elongates and contracts to help to control the opening and closing of the enzyme and assembly of the active site. Our findings reveal the detailed reaction pathway of a eukaryotic cut-and-paste transposase and illuminate some of the earliest steps in the evolution of the RAG recombinase.


Subject(s)
Biocatalysis , Homeodomain Proteins , Moths/enzymology , Transposases/chemistry , Transposases/metabolism , Amino Acid Sequence , Animals , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoenzymes/ultrastructure , Base Sequence , Cryoelectron Microscopy , Crystallography, X-Ray , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Cleavage , DNA-Binding Proteins , Evolution, Molecular , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Homeodomain Proteins/ultrastructure , Models, Molecular , Moths/ultrastructure , Protein Domains , Transposases/ultrastructure
15.
Int J Biol Macromol ; 136: 676-685, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31207333

ABSTRACT

The M. tuberculosis GmhB protein converts the d-glycero-α-d-manno-heptose 1,7-bisphosphate (GMB) intermediate into d-glycero-α-d-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position. To understand the structure and substrate binding mechanism, the MtbGmhB was purified which elutes as monomer on gel filtration column. The small angle x-ray scattering analysis shows that MtbGmhB forms fully folded monomer with shape profile similar to its modeled structure. The circular dichroism analysis shows 38% α-helix, 15% ß-sheets and 47% random coil structures in MtbGmhB, similar to haloalkanoic acid dehalogenase (HAD) phosphohydrolase enzymes. The modeled MtbGmhB structure shows the catalytic site, which forms a concave, semicircular surface using the three loops around GMB substrate binding site. Dynamic simulation analysis on (i) Apo (ii) GMB bound (iii) GMB + Mg2+ bound (iv) Zn2+ +GMB + Mg2+ bound MtbGmhB structures show that Zn2+ as well as Mg2+ ions stabilize the loop conformation and trigger the changes in GMB substrate binding to active site of MtbGmhB. Upon demetallization, the large conformational changes occurred in ions binding loops, and leads to difference in GMB substrate binding to MtbGmhB. Our study provides information about structure and substrate binding of MtbGmhB, which may contribute in therapeutic development against M. tuberculosis.


Subject(s)
Guanosine Diphosphate/biosynthesis , Heptoses/biosynthesis , Mycobacterium tuberculosis/enzymology , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Scattering, Small Angle , X-Ray Diffraction , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Catalytic Domain , Magnesium/metabolism , Molecular Docking Simulation , Zinc/metabolism
16.
Int J Biol Macromol ; 132: 994-1000, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30953724

ABSTRACT

The structure and folding/unfolding kinetics of Cyathus bulleri laccase 1 (Lcc1), expressed in Pichia pastoris, were analyzed by spectroscopic methods to understand the role of central metal ion. Far UV CD structure analysis revealed major ß-sheet and minor α helical segments present in the Lcc1. A significant change in the spectrum of Lcc1, indicative of unfolding of secondary structures, was observed with increasing concentrations of guanidinium chloride (GdnHCl) during Trp fluorescence, absorption and CD measurements. A similar trend was also noticed for enzyme activity with respect to GdnHCl concentrations. To establish the role of copper ion in the catalytic activity of laccase, a complete removal of copper was carried out and addition of copper was found to restore the structure and activity during the refolding process. The apo form was also reconstituted by addition of zinc ion which restored nearly 84% of enzyme activity, indicating non-essential role of copper in maintaining conformation and activity. Structural studies and inductively coupled plasma mass spectrometry data supported these observations.


Subject(s)
Copper , Cyathus/enzymology , Guanidine/pharmacology , Laccase/chemistry , Laccase/metabolism , Protein Denaturation/drug effects , Apoenzymes/chemistry , Apoenzymes/metabolism , Biocatalysis , Dose-Response Relationship, Drug , Protein Refolding/drug effects , Protein Structure, Secondary , Thermodynamics , Zinc
17.
Biophys J ; 116(10): 1823-1835, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31003762

ABSTRACT

A critical step in injury-induced initiation of blood coagulation is the formation of the complex between the trypsin-like protease coagulation factor VIIa (FVIIa) and its cofactor tissue factor (TF), which converts FVIIa from an intrinsically poor enzyme to an active protease capable of activating zymogens of downstream coagulation proteases. Unlike its constitutively active ancestor trypsin, FVIIa is allosterically activated (by TF). Here, ensemble refinement of crystallographic structures, which uses multiple copies of the entire structure as a means of representing structural flexibility, is applied to explore the impacts of inhibitor binding to trypsin and FVIIa, as well as cofactor binding to FVIIa. To assess the conformational flexibility and its role in allosteric pathways in these proteases, main-chain hydrogen bond networks are analyzed by calculating the hydrogen-bond propensity. Mapping pairwise propensity differences between relevant structures shows that binding of the inhibitor benzamidine to trypsin has a minor influence on the protease flexibility. For FVIIa, in contrast, the protease domain is "locked" into the catalytically competent trypsin-like configuration upon benzamidine binding as indicated by the stabilization of key structural features: the nonprime binding cleft and the oxyanion hole are stabilized, and the effect propagates from the active site region to the calcium-binding site and to the vicinity of the disulphide bridge connecting with the light chain. TF binding to FVIIa furthermore results in stabilization of the 170 loop, which in turn propagates an allosteric signal from the TF-binding region to the active site. Analyses of disulphide bridge energy and flexibility reflect the striking stability difference between the unregulated enzyme and the allosterically activated form after inhibitor or cofactor binding. The ensemble refinement analyses show directly, for the first time to our knowledge, whole-domain structural footprints of TF-induced allosteric networks present in x-ray crystallographic structures of FVIIa, which previously only have been hypothesized or indirectly inferred.


Subject(s)
Factor VIIa/chemistry , Factor VIIa/metabolism , Allosteric Regulation , Apoenzymes/chemistry , Apoenzymes/metabolism , Benzamidines/pharmacology , Crystallography, X-Ray , Disulfides/chemistry , Enzyme Activation/drug effects , Models, Molecular , Protein Domains , Protein Folding , Trypsin/chemistry , Trypsin/metabolism , Trypsinogen/metabolism
18.
Int J Mol Sci ; 20(5)2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30836629

ABSTRACT

Human triokinase/flavin mononucleotide (FMN) cyclase (hTKFC) catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of D-glyceraldehyde and dihydroxyacetone (DHA), and the cyclizing splitting of flavin adenine dinucleotide (FAD). hTKFC structural models are dimers of identical subunits, each with two domains, K and L, with an L2-K1-K2-L1 arrangement. Two active sites lie between L2-K1 and K2-L1, where triose binds K and ATP binds L, although the resulting ATP-to-triose distance is too large (≈14 Å) for phosphoryl transfer. A 75-ns trajectory of molecular dynamics shows considerable, but transient, ATP-to-DHA approximations in the L2-K1 site (4.83 Å or 4.16 Å). To confirm the trend towards site closure, and its relationship to kinase activity, apo-hTKFC, hTKFC:2DHA:2ATP and hTKFC:2FAD models were submitted to normal mode analysis. The trajectory of hTKFC:2DHA:2ATP was extended up to 160 ns, and 120-ns trajectories of apo-hTKFC and hTKFC:2FAD were simulated. The three systems were comparatively analyzed for equal lengths (120 ns) following the principles of essential dynamics, and by estimating site closure by distance measurements. The full trajectory of hTKFC:2DHA:2ATP was searched for in-line orientations and short distances of DHA hydroxymethyl oxygens to ATP γ-phosphorus. Full site closure was reached only in hTKFC:2DHA:2ATP, where conformations compatible with an associative phosphoryl transfer occurred in L2-K1 for significant trajectory time fractions.


Subject(s)
Apoenzymes/genetics , Molecular Dynamics Simulation , Phosphorus-Oxygen Lyases/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Adenosine Triphosphate/chemistry , Apoenzymes/chemistry , Binding Sites , Catalysis , Catalytic Domain/genetics , Dihydroxyacetone/chemistry , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/genetics , Flavin-Adenine Dinucleotide/chemistry , Glyceraldehyde/chemistry , Humans , Phosphorus-Oxygen Lyases/genetics , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Substrate Specificity
19.
Int J Biol Macromol ; 129: 588-600, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30703421

ABSTRACT

Salicylate hydroxylase (NahG) is a flavin-dependent monooxygenase that catalyzes the decarboxylative hydroxylation of salicylate into catechol in the naphthalene degradation pathway in Pseudomonas putida G7. We explored the mechanism of action of this enzyme in detail using a combination of structural and biophysical methods. NahG shares many structural and mechanistic features with other versatile flavin-dependent monooxygenases, with potential biocatalytic applications. The crystal structure at 2.0 Šresolution for the apo form of NahG adds a new snapshot preceding the FAD binding in flavin-dependent monooxygenases. The kcat/Km for the salicylate reaction catalyzed by the holo form is >105 M-1 s-1 at pH 8.5 and 25 °C. Hammett plots for Km and kcat using substituted salicylates indicate change in rate-limiting step. Electron-donating groups favor the hydroxylation of salicylate by a peroxyflavin to yield a Wheland-like intermediate, whereas the decarboxylation of this intermediate is faster for electron-withdrawing groups. The mechanism is supported by structural data and kinetic studies at different pHs. The salicylate carboxyl group lies near a hydrophobic region that aids decarboxylation. A conserved histidine residue is proposed to assist the reaction by general base/general acid catalysis.


Subject(s)
Biocatalysis , Catechols/metabolism , Dinitrocresols/metabolism , Mixed Function Oxygenases/metabolism , Salicylic Acid/metabolism , Apoenzymes/chemistry , Apoenzymes/metabolism , Catalytic Domain , Kinetics , Mixed Function Oxygenases/chemistry , Models, Molecular , Pseudomonas putida/enzymology , Thermodynamics
20.
J Mol Model ; 24(12): 347, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30498917

ABSTRACT

Low-temperature methane oxidation is one of the greatest challenges in energy research. Although methane monooxygenase (MMO) does this catalysis naturally, how to use this biocatalyst in a fuel cell environment where the electrons generated during the oxidation process is harvested and used for energy generation has not yet been investigated. A key requirement to use this enzyme in a fuel cell is wiring of the active site of the enzyme directly to the supporting electrode. In soluble MMO (sMMO), two cofactors, i.e., nicotinamide adenine di-nucleotide (NAD+) and flavin adenine dinucleotide (FAD) provide opportunities for direct attachment of the enzyme system to a supporting electrode. However, once modified to be compatible with a supporting metal electrode via FeS functionalization, how the two cofactors respond to complex binding phenomena is not yet understood. Using docking and molecular dynamic simulations, modified cofactors interactions with sMMO-reductase (sMMOR) were studied. Studies revealed that FAD modification with FeS did not interfere with binding phenomena. In fact, FeS introduction significantly improved the binding affinity of FAD and NAD+ on sMMOR. The simulations revealed a clear thermodynamically more favorable electron transport path for the enzyme system. This system can be used as a fuel cell and we can use FeS-modified-FAD as the anchoring molecule as opposed to using NAD+. The overall analysis suggests the strong possibility of building a fuel cell that could catalyze methane oxidation using sMMO as the anode biocatalyst.


Subject(s)
Apoenzymes/chemistry , Bacterial Proteins/chemistry , Coenzymes/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxygenases/chemistry , Apoenzymes/metabolism , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Coenzymes/metabolism , Computational Biology/methods , Electron Transport , Methane/metabolism , Methylococcus capsulatus/enzymology , Oxygenases/metabolism , Protein Binding , Protein Domains , Protein Engineering/methods , Reproducibility of Results , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...