Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 28(2): 439-445, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27297947

ABSTRACT

Amyloidosis is characterized by extracellular deposition of misfolded proteins as insoluble fibrils. Most renal amyloidosis cases are Ig light chain, AA, or leukocyte chemotactic factor 2 amyloidosis, but rare hereditary forms can also involve the kidneys. Here, we describe the case of a 61-year-old woman who presented with nephrotic syndrome and renal impairment. Examination of the renal biopsy specimen revealed amyloidosis with predominant involvement of glomeruli and medullary interstitium. Proteomic analysis of Congo red-positive deposits detected large amounts of the Apo-CII protein. DNA sequencing of the APOC2 gene in the patient and one of her children detected a heterozygous c.206A→T transition, causing an E69V missense mutation. We also detected the mutant peptide in the proband's renal amyloid deposits. Using proteomics, we identified seven additional elderly patients with Apo-CII-rich amyloid deposits, all of whom had kidney involvement and histologically exhibited nodular glomerular involvement. Although prior in vitro studies have shown that Apo-CII can form amyloid fibrils and that certain mutations in this protein promote amyloid fibrillogenesis, there are no reports of this type of amyloidosis in humans. We propose that this study reveals a new form of hereditary amyloidosis (AApoCII) that is derived from the Apo-CII protein and appears to manifest in the elderly and preferentially affect the kidneys.


Subject(s)
Amyloidosis/etiology , Apolipoprotein C-II/physiology , Kidney Diseases/etiology , Amyloidosis/classification , Female , Humans , Kidney Diseases/classification , Middle Aged
2.
Nat Med ; 18(6): 967-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22581286

ABSTRACT

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.


Subject(s)
Apolipoproteins B/physiology , Lipoproteins/physiology , Neovascularization, Physiologic , Vascular Endothelial Growth Factor Receptor-1/physiology , Amino Acid Sequence , Animals , Apolipoprotein C-II/physiology , Bacterial Proteins/genetics , Carrier Proteins/physiology , Cells, Cultured , Humans , Lipoproteins, LDL/metabolism , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Vascular Endothelial Growth Factor Receptor-1/analysis , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...