Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 664
Filter
1.
Nat Commun ; 15(1): 4695, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824138

ABSTRACT

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-ß (Aß) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aß in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aß co-aggregates account for ~50% of the mass of diffusible Aß aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aß tune disease-related functions of Aß aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aß. Selectively removing non-lipidated apoE4-Aß co-aggregates enhances clearance of toxic Aß by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Apolipoproteins E , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Animals , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , Mice , Female , Protein Aggregates , Male , Protein Aggregation, Pathological/metabolism , Mice, Transgenic , Neuroglia/metabolism
2.
Nat Commun ; 15(1): 4706, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830849

ABSTRACT

The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Tauopathies , White Matter , tau Proteins , Humans , White Matter/diagnostic imaging , White Matter/pathology , White Matter/metabolism , Female , Male , Aged , Middle Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/genetics , Tauopathies/cerebrospinal fluid , tau Proteins/metabolism , tau Proteins/cerebrospinal fluid , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Neurites/metabolism , Neurites/pathology
3.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714706

ABSTRACT

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Subject(s)
Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
4.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Article in English | MEDLINE | ID: mdl-38742194

ABSTRACT

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Subject(s)
Alzheimer Disease , Apolipoprotein E3 , Apolipoprotein E4 , Estradiol , Mice, Transgenic , Ovariectomy , Animals , Estradiol/pharmacology , Female , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Behavior, Animal/drug effects , Amyloid beta-Peptides/metabolism , Disease Models, Animal
5.
Traffic ; 25(5): e12937, 2024 May.
Article in English | MEDLINE | ID: mdl-38777335

ABSTRACT

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Subject(s)
Aging , Apolipoprotein E2 , Brain , Endosomes , Exosomes , Animals , Humans , Mice , Aging/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Brain/metabolism , Endosomes/metabolism , Exosomes/metabolism , Mice, Inbred C57BL , Neurons/metabolism
6.
Acta Neuropathol ; 147(1): 91, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772917

ABSTRACT

APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aß pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aß 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aß-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Frontal Lobe/metabolism , Frontal Lobe/pathology , Genotype , Phosphorylation , Proteomics , tau Proteins/metabolism , tau Proteins/genetics
7.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771543

ABSTRACT

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Astrocytes , Blood-Brain Barrier , Cytokines , Spike Glycoprotein, Coronavirus , Blood-Brain Barrier/metabolism , Humans , Cytokines/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Astrocytes/virology , Astrocytes/drug effects , Apolipoprotein E3/metabolism , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , SARS-CoV-2 , COVID-19/metabolism , COVID-19/immunology , Cells, Cultured
8.
Biosci Trends ; 18(2): 195-197, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38631884

ABSTRACT

APOE4 is widely recognized as a genetic risk factor for Alzheimer's disease (AD), implicated in 60-80% of all AD cases. Recent research suggests that microglia carrying the APOE4 genotype display abnormal lipid metabolism and accumulate lipid droplets, which may exacerbate the pathology of AD. Microglia play a critical role in immune surveillance within the central nervous system and are responsible for removing harmful particles and preserving neuronal function. The APOE4 genotype causes abnormal lipid metabolism in microglia, resulting in excessive accumulation of lipid droplets. This accumulation not only impairs the phagocytic and clearance capabilities of microglia but also disrupts their interactions with neurons, resulting in disorganization and neurodegenerative alterations at the neuronal network level. In addition, the presence of APOE4 modifies the metabolic landscape of microglia, particularly affecting purinergic signaling and lipid metabolism, thereby exacerbating the pathological processes of AD. In conclusion, the accumulation of lipid droplets and abnormal lipid metabolism may be critical mechanisms in the progression of AD in microglia carrying the APOE4 genotype.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Genotype , Lipid Metabolism , Microglia , Microglia/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Humans , Lipid Metabolism/genetics , Animals
9.
Nature ; 628(8006): 154-161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480892

ABSTRACT

Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aß induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Lipid Droplets , Microglia , Animals , Female , Humans , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Induced Pluripotent Stem Cells/cytology , Lipid Droplets/metabolism , Lipid Droplets/pathology , Microglia/cytology , Microglia/metabolism , Microglia/pathology , Triglycerides , tau Proteins , Culture Media, Conditioned , Phosphorylation , Genetic Predisposition to Disease
10.
J Cell Mol Med ; 28(7): e18160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506067

ABSTRACT

Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.


Subject(s)
Apolipoprotein E4 , Melatonin , Mice , Animals , Apolipoprotein E4/metabolism , Apolipoprotein E4/pharmacology , Depression , Melatonin/pharmacology , Melatonin/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Proteomics , Mitochondria/metabolism , Apolipoproteins E/metabolism , Mice, Transgenic , AMP-Activated Protein Kinases/metabolism
11.
FEBS Lett ; 598(8): 902-914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38529702

ABSTRACT

Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid ß in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states. Here, we generated novel anti-apoE monoclonal antibodies (mAbs) and obtained an apoE4-selective mAb whose epitope is within residues 110-117. ELISA and bio-layer interferometry measurements demonstrated that the dissociation constants of mAbs are within the nanomolar range. Using the generated antibodies, we successfully constructed sandwich ELISA systems, which can detect all apoE isoforms or selectively detect apoE4. These results suggest the usability of the generated anti-apoE mAbs for selective detection of apoE isoforms.


Subject(s)
Antibodies, Monoclonal , Apolipoproteins E , Protein Isoforms , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Humans , Protein Isoforms/immunology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/chemistry , Apolipoproteins E/immunology , Animals , Epitopes/immunology , Epitopes/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/immunology , Apolipoprotein E4/metabolism , Mice, Inbred BALB C , Apolipoprotein E3/immunology , Apolipoprotein E3/genetics , Apolipoprotein E3/chemistry , Apolipoprotein E3/metabolism
12.
Arch Gerontol Geriatr ; 123: 105420, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38537387

ABSTRACT

Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.


Subject(s)
Alzheimer Disease , Animals, Genetically Modified , Drosophila melanogaster , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Humans , Lipid Metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Mitochondrial Dynamics
13.
Mol Neurodegener ; 19(1): 24, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468308

ABSTRACT

Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 µm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid ß (Aß), we infused locally Hi-Lyte Fluor 555-labeled Aß in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aß, and less Aß coverage at early time points after Aß injection. To test whether P2RY12 is involved in process movement in response to Aß, we treated acute brain slices with a P2RY12 antagonist before Aß injection; microglial processes no longer migrated towards Aß. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aß pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Mice , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , Genotype , Mice, Transgenic , Microglia/metabolism
14.
J Alzheimers Dis ; 97(4): 1629-1639, 2024.
Article in English | MEDLINE | ID: mdl-38306049

ABSTRACT

APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-ß peptide (Aß) (EFAD) to evaluate the effect of APOE2 dosage on Aß pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aß42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aß42. These findings offer initial insights on the impact of APOE2 on Aß pathology.


Subject(s)
Alzheimer Disease , Hyperlipidemias , Mice , Animals , Apolipoprotein E2/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Mice, Transgenic , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E3 , Mice, Inbred Strains , Hippocampus/pathology , Hyperlipidemias/genetics
15.
Food Funct ; 15(4): 2249-2264, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38319599

ABSTRACT

The ApoE4 allele is the strongest genetic determinant for Alzheimer's disease (AD), while obesity is a strong environmental risk for AD. The modulatory effect of the ApoE genotype on aging-related cognitive function in tandem with a high-fat diet (HFD) remains uncertain. This study aimed to elucidate the effects of ApoE3/ApoE4 genotypes in aged mice exposed to a HFD, and the benefits of n-3 polyunsaturated fatty acids (PUFAs) from fish oil. Remarkably, the HFD led to weight gain and lipid accumulation, more pronounced in ApoE3 mice, while ApoE4 mice experienced exacerbated cerebral insulin resistance, neuroinflammation, and oxidative stress. Critically, n-3 PUFAs modulated the cerebral insulin signaling via the IRS-1/AKT/GLUT4 pathway, mitigated microglial hyperactivity, and reduced IL-6 and MDA levels, thereby counteracting cognitive deficits. These findings highlight the contrasting impacts of ApoE genotypes on aging mice exposed to a HFD, supporting n-3 PUFAs as a strategic nutritional intervention for brain health, especially for ApoE4 carriers.


Subject(s)
Alzheimer Disease , Fatty Acids, Omega-3 , Mice , Animals , Diet, High-Fat/adverse effects , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoproteins E/genetics , Genotype , Cognition , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Aging , Mice, Transgenic
16.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38334983

ABSTRACT

The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to lipogenesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the endoplasmic reticulum (ER) lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs after a fatty acid pulse, which contain more unsaturated triglyceride after fatty acid pulse-chase. This LD size phenotype was rescued by chimeric APOE that targets only LDs. Like APOE depletion, APOE4-expressing astrocytes form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 causes aberrant LD composition and morphology. Our study contributes to accumulating evidence that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation, which could contribute to Alzheimer's disease risk.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Astrocytes , Lipid Droplets , Triglycerides , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Astrocytes/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism
17.
J Alzheimers Dis ; 97(3): 1007-1031, 2024.
Article in English | MEDLINE | ID: mdl-38306054

ABSTRACT

Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aß accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alleles , Endosomes/metabolism , Lysosomes/metabolism , Autophagy/genetics
18.
Exp Neurol ; 374: 114702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301863

ABSTRACT

Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.


Subject(s)
Apolipoprotein E4 , Brain Concussion , Mice , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Mice, Transgenic , Endothelial Cells/metabolism , Brain/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain Concussion/metabolism
19.
Exp Brain Res ; 242(3): 543-557, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206365

ABSTRACT

Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Mice , Animals , Female , Male , Aged , Infant , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/pathology , Alzheimer Disease/genetics , Housing Quality , Sex Characteristics , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Brain/metabolism , Immune System/metabolism , Immune System/pathology , Mice, Transgenic
20.
Neuron ; 112(7): 1100-1109.e5, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38266643

ABSTRACT

The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.


Subject(s)
Apolipoproteins E , Astrocytes , Lipoproteins , Astrocytes/metabolism , Apolipoproteins E/genetics , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Central Nervous System/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...