Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.376
Filter
1.
Sci Rep ; 14(1): 12917, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839811

ABSTRACT

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Subject(s)
Atherosclerosis , Foam Cells , Inflammation , Saponins , Animals , Foam Cells/drug effects , Foam Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Saponins/pharmacology , Mice , Inflammation/drug therapy , Inflammation/pathology , Allium/chemistry , Male , Apolipoproteins E/deficiency , Diet, High-Fat/adverse effects , NF-kappa B/metabolism , Mice, Inbred C57BL , Lipoproteins, LDL/metabolism
2.
Article in English | MEDLINE | ID: mdl-38780292

ABSTRACT

ABSTRACT: Arteriosclerosis (AS) is a chronic inflammatory disease and Buyang Huanwu decoction (BHD) has been identified as an anti-atherosclerosis effect, and the study is aimed to investigate the underlying mechanism. The E4 allele of Apolipoprotein E (ApoE) is associated with both metabolic dysfunction and an enhanced pro-inflammatory response, ApoE-knockout (ApoE-/-) mice were fed with a high-fat diet to establish an arteriosclerosis model and treated with BHD or atorvastatin (as a positive control). The atherosclerotic plaque in each mouse was evaluated using Oil red O Staining. Elisa kits were used to evaluate blood lipid, interleukin-6 (IL-6), IL-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and tumor growth factor beta (TGF-ß) contents, while Western blot was applicated to measure inducible nitric oxide synthase (iNOS), arginase I (Arg-1) expression. Meanwhile, pyruvate kinase M2 (PKM2), hypoxia-inducible factor-1 alpha (HIF-1α) and its target genes glucose transporter type 1 (GLUT1), lactate dehydrogenase A (LDHA), and 3-phosphoinositide-dependent kinase 1 (PDK1), as well as IL-6, IL-1ß, TNF-α, IL-4, IL-10, and TGF-ß were evaluated by the quantitative reverse transcription-polymerase chain reaction. BHD treatment significantly reduced body weight and arteriosclerosis plaque area and blood lipid levels including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Meanwhile, BHD demonstrated a significant suppression of M1 polarization, by decreased secretion of iNOS and pro-inflammatory factors (IL-6, IL-1ß, and TNF-α) in ApoE-/- mice. The present study also revealed that BHD promotes the activation of M2 polarization, characterized by the expression of Arg-1 and anti-inflammatory factors (IL-4 and IL-10). In addition, PKM2/HIF-1α signaling was improved by M1/M2 macrophages polarization induced by BHD. The downstream target genes (GLUT1, LDHA, and PDK1) expression was significantly increased in high fat feeding ApoE-/- mice, and those of which were recused by BHD and Atorvastatin. These results suggested that M1/M2 macrophages polarization produce the inflammatory response against AS progress after BHD exposure.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Macrophages , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Disease Models, Animal , Mice, Knockout, ApoE , Mice, Knockout , Mice, Inbred C57BL , Cytokines/metabolism
3.
Article in English | MEDLINE | ID: mdl-38780293

ABSTRACT

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Subject(s)
Apolipoproteins E , Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Mice , Male , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice, Knockout , Mice, Knockout, ApoE
4.
Sci Rep ; 14(1): 12450, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816571

ABSTRACT

The effects of low doses of ionizing radiation on atherosclerosis remain uncertain, particularly as regards the generation of pro- or anti-inflammatory responses, and the time scale at which such effects can occur following irradiation. To explore these phenomena, we exposed atheroprone ApoE(-/-) mice to a single dose of 0, 0.05, 0.5 or 1 Gy of 137Cs (γ) administered at a 10.35 mGy min-1 dose rate and evaluated short-term (1-10 days) and long-term consequences (100 days). Bone marrow-derived macrophages were derived from mice 1 day after exposure. Irradiation was associated with a significant skewing of M0 and M2 polarized macrophages towards the M2 phenotype, as demonstrated by an increased mRNA expression of Retnla, Arg1, and Chil3 in cells from mice exposed to 0.5 or 1 Gy compared with non-irradiated animals. Minimal effects were noted in M1 cells or M1 marker mRNA. Concurrently, we observed a reduced secretion of IL-1ß but enhanced IL-10 release from M0 and M2 macrophages. Effects of irradiation on circulating monocytes were most marked at day 10 post-exposure, when the 1 Gy dose was associated with enhanced numbers of both Ly6CHigh and Ly6Low cells. By day 100, levels of circulating monocytes in irradiated and non-irradiated mice were equivalent, but anti-inflammatory Ly6CLow monocytes were significantly increased in the spleen of mice exposed to 0.05 or 1 Gy. Long term exposures did not affect atherosclerotic plaque size or lipid content, as determined by Oil red O staining, whatever the dose applied. Similarly, irradiation did not affect atherosclerotic plaque collagen or smooth muscle cell content. However, we found that lesion CD68+ cell content tended to decrease with rising doses of radioactivity exposure, culminating in a significant reduction of plaque macrophage content at 1 Gy. Taken together, our results show that short- and long-term exposures to low to moderate doses of ionizing radiation drive an anti-inflammatory response, skewing bone marrow-derived macrophages towards an IL-10-secreting M2 phenotype and decreasing plaque macrophage content. These results suggest a low-grade athero-protective effect of low and moderate doses of ionizing radiation.


Subject(s)
Apolipoproteins E , Cesium Radioisotopes , Gamma Rays , Macrophages , Plaque, Atherosclerotic , Animals , Macrophages/metabolism , Macrophages/radiation effects , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Mice , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice, Knockout , CD68 Molecule
6.
Atherosclerosis ; 392: 117519, 2024 May.
Article in English | MEDLINE | ID: mdl-38581737

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Subject(s)
Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
7.
Int J Biol Macromol ; 268(Pt 2): 131868, 2024 May.
Article in English | MEDLINE | ID: mdl-38677690

ABSTRACT

Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Fibrillin-1/metabolism , Fibrillin-1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Signal Transduction , Disease Models, Animal , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice, Knockout
8.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672446

ABSTRACT

Preclinical studies regarding the potential of liver X receptor (LXR) agonists to inhibit macrophage foam cell formation and the development of atherosclerotic lesions are generally executed in mice fed with Western-type diets enriched in cholesterol and fat. Here, we investigated whether LXR agonism remains anti-atherogenic under dietary conditions with a low basal hepatic lipogenesis rate. Hereto, atherosclerosis-susceptible male apolipoprotein E knockout mice were fed a low-fat diet with or without 10 mg/kg/day LXR agonist T0901317 supplementation for 8 weeks. Importantly, T0901317 significantly stimulated atherosclerosis susceptibility, despite an associated increase in the macrophage gene expression levels of cholesterol efflux transporters ABCA1 and ABCG1. The pro-atherogenic effect of T0901317 coincided with exacerbated hypercholesterolemia, hypertriglyceridemia, and a significant rise in hepatic triglyceride stores and macrophage numbers. Furthermore, T0901317-treated mice exhibited elevated plasma MCP-1 levels and monocytosis. In conclusion, these findings highlight that the pro-atherogenic hepatic effects of LXR agonism are dominant over the anti-atherogenic effects in macrophages in determining the overall atherosclerosis outcome under low-fat diet feeding conditions. A low-fat diet experimental setting, as compared to the commonly used high-fat-diet-based preclinical setup, thus appears more sensitive in uncovering the potential relevance of the off-target liver effects of novel anti-atherogenic therapeutic approaches that target macrophage LXR.


Subject(s)
Apolipoproteins E , Atherosclerosis , Benzenesulfonamides , Fluorocarbons , Macrophages , Animals , Male , Mice , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/pathology , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Liver/metabolism , Liver/drug effects , Liver/pathology , Liver X Receptors/agonists , Liver X Receptors/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Triglycerides/blood , Triglycerides/metabolism
9.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674885

ABSTRACT

The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.


Subject(s)
Atherosclerosis , Fatty Acids , Interleukin-33 , Mice, Knockout , Animals , Interleukin-33/metabolism , Interleukin-33/genetics , Atherosclerosis/metabolism , Male , Mice , Fatty Acids/metabolism , Humans , Disease Models, Animal , Palmitic Acid/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Diet, High-Fat , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Endothelial Cells/metabolism , Mice, Knockout, ApoE , Lymphocytes/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/pathology , Immunity, Innate
10.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490635

ABSTRACT

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Subject(s)
Apolipoproteins , Isotope Labeling , Proteomics , Animals , Mice , Proteomics/methods , Apolipoproteins/blood , Kinetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/blood , Chromatography, Liquid/methods , Mice, Inbred C57BL , Mice, Knockout , Male
11.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525541

ABSTRACT

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Subject(s)
Adipose Tissue , Atherosclerosis , GTP-Binding Protein gamma Subunits , Lipodystrophy , Mice, Knockout , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue/transplantation , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , GTP-Binding Protein gamma Subunits/deficiency , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Insulin Resistance , Leptin/blood , Leptin/metabolism , Lipodystrophy/metabolism , Lipodystrophy/genetics , Lipodystrophy/pathology , Mice, Inbred C57BL
12.
Microb Pathog ; 171: 105730, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995253

ABSTRACT

Apolipoprotein E (ApoE) is the major ligand for the transporting and removal of chylomicrons and lipoproteins by the liver. Since the creation of the ApoE-knockout mice, it is well established that ApoE deficiency results in spontaneous atherosclerosis in aged animals. Atherosclerosis is also observed in animals infected with Trypanosoma cruzi, a protozoan that elicits a systemic inflammatory response in mammalian hosts, culminating in damage to cardiac, neuronal, and endothelial cells. Pro-atherogenic effects related to the experimental infection with T. cruzi may be induced by inflammatory components affecting the vascular wall. Herein, we evaluated whether infection with different strains of T. cruzi worsened the atherogenic lesions observed in aged ApoE-/- mice. After four weeks of infection with Berenice-78 (Be-78) or Colombian (Col) strains of the parasite, mice presented increased CCL2 and CCL5 production and high migration of inflammatory cells to cardiac tissue. Although the infection with either strain did not affect the survival rate, only the infection with Col strain caused abundant parasite growth in blood and heart and increased aortic root lesions in ApoE-/- mice. Our findings show, for the first time that ApoE exerts a protective anti-atherosclerotic role in the aortic root of mice in the acute phase of experimental infection with the Col strain of T. cruzi. Further studies should target ApoE and nutritional interventions to modulate susceptibility to cardiovascular disabilities after T. cruzi infection, minimizing the risk of death in both experimental animals and humans.


Subject(s)
Apolipoproteins E , Atherosclerosis , Chagas Disease , Trypanosoma cruzi , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/complications , Atherosclerosis/pathology , Chagas Disease/complications , Chylomicrons , Endothelial Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
Biochem Pharmacol ; 201: 115075, 2022 07.
Article in English | MEDLINE | ID: mdl-35525326

ABSTRACT

Chronic inflammation in atherosclerosis reflects a failure in the resolution of inflammation. Pro-resolving lipid mediators derived from omega-3 fatty acids reduce the development of atherosclerosis in murine models. The aim of the present study was to decipher the role of the specialized proresolving mediator (SPM) resolvin D2 (RvD2) in atherosclerosis and its signaling through the G-protein coupled receptor (GPR) 18. The ligand and receptor were detected in human coronary arteries in relation to the presence of atherosclerotic lesions and its cellular components. Importantly, RvD2 levels were significantly higher in atherosclerotic compared with healthy human coronary arteries. Furthermore, apolipoprotein E (ApoE) deficient hyperlipidemic mice were treated with either RvD2 or vehicle in the absence and presence of the GPR18 antagonist O-1918. RvD2 significantly reduced atherosclerosis, necrotic core area, and pro-inflammatory macrophage marker expression. RvD2 in addition enhanced macrophage phagocytosis. The beneficial effects of RvD2 were not observed in the presence of O-1918. Taken together, these results provide evidence of atheroprotective pro-resolving signalling through the RvD2-GPR18 axis.


Subject(s)
Apolipoproteins E , Atherosclerosis , Coronary Artery Disease , Docosahexaenoic Acids , Receptors, G-Protein-Coupled , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Docosahexaenoic Acids/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Mice , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
14.
J Nutr Biochem ; 101: 108945, 2022 03.
Article in English | MEDLINE | ID: mdl-35016999

ABSTRACT

Maternal hypercholesterolemia (MHC), a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy, may influence offspring hepatic lipid metabolism and increase the risk of nonalcoholic fatty liver disease (NAFLD). As NAFLD is characterized by a sexual dimorphic response, we assessed whether early-life exposure to excessive cholesterol influences the development of NAFLD in offspring and whether this occurs in a sex-specific manner. Female apoE-/- mice were randomly assigned to a control (CON) or a high cholesterol (CH; 0.15%) diet prior to breeding. At parturition, a cross-fostering approach was used to establish three groups: (1) normal cholesterol exposure throughout gestation and lactation (CON-CON); (2) excessive cholesterol exposure throughout gestation and lactation (CH-CH); and (3) excessive cholesterol exposure in the gestation period only (CH-CON). Adult male offspring (PND 84) exposed to excessive cholesterol during gestation only (CH-CON) demonstrated hepatic triglyceride (TG) accumulation and reduced lipogenic gene expression. However, male mice with a prolonged cholesterol exposure throughout gestation and lactation (CH-CH) had a similar, but not exacerbated hepatic response. Further, with the exception of higher serum TG in adult CH-CH females, evidence for a programming effect in female offspring was largely absent in comparison with males. These results indicate a sexual dimorphic response with respect to the effect of MHC on later life hepatic steatosis and highlight the gestation period as the most influential malprogramming window for hepatic lipid dysfunction in males.


Subject(s)
Cholesterol, Dietary , Hypercholesterolemia , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Pregnancy Complications , Sex Characteristics , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Body Weight , Female , Heart/anatomy & histology , Lactation , Lipids/blood , Liver/anatomy & histology , Male , Mice , Organ Size , Pregnancy , Prenatal Exposure Delayed Effects , Triglycerides/blood
15.
Nat Commun ; 13(1): 215, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017526

ABSTRACT

Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+ Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Blood Vessels/metabolism , Lectins, C-Type/genetics , Macrophages/metabolism , Animals , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Vessels/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Death/genetics , Cell Differentiation , Cell Lineage/genetics , Cholesterol/metabolism , Disease Models, Animal , Gene Expression Regulation , Homeostasis/genetics , Humans , Lectins, C-Type/deficiency , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Signal Transduction , Single-Cell Analysis
16.
J Biol Chem ; 298(2): 101582, 2022 02.
Article in English | MEDLINE | ID: mdl-35031322

ABSTRACT

Lysine N-pyrrolation, a posttranslational modification, which converts lysine residues to Nε-pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE-/-) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE-/- mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE-/- mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.


Subject(s)
Apolipoproteins E , B-Lymphocyte Subsets , DNA , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , B-Lymphocyte Subsets/metabolism , DNA/genetics , DNA/metabolism , Immunoglobulin M/metabolism , Lysine/metabolism , Mice , Receptors, Antigen, B-Cell
17.
J Clin Endocrinol Metab ; 107(2): 538-548, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34467996

ABSTRACT

CONTEXT: Dysbetalipoproteinemia (DBL) is characterized by the accumulation of remnant lipoprotein particles and associated with an increased risk of cardiovascular and peripheral vascular disease (PVD). DBL is thought to be mainly caused by the presence of an E2/E2 genotype of the apolipoprotein E (APOE) gene, in addition to environmental factors. However, there exists considerable phenotypic variability among DBL patients. OBJECTIVE: The objectives were to verify the proportion of DBL subjects, diagnosed using the gold standard Fredrickson criteria, who did not carry E2/E2 and to compare the clinical characteristics of DBL patients with and without E2/E2. METHODS: A total of 12 432 patients with lipoprotein ultracentrifugation as well as APOE genotype or apoE phenotype data were included in this retrospective study. RESULTS: Among the 12 432 patients, 4% (n = 524) were positive for Fredrickson criteria (F+), and only 38% (n = 197) of the F+ individuals were E2/E2. The F+ E2/E2 group had significantly higher remnant cholesterol concentration (3.44 vs 1.89 mmol/L) and had higher frequency of DBL-related xanthomas (24% vs 2%) and floating beta (95% vs 11%) than the F+ non-E2/E2 group (P < 0.0001). The F+ E2/E2 group had an independent higher risk of PVD (OR 11.12 [95% CI 1.87-66.05]; P = 0.008) events compared with the F+ non-E2/E2 group. CONCLUSION: In the largest cohort of DBL worldwide, we demonstrated that the presence of E2/E2 was associated with a more severe DBL phenotype. We suggest that 2 DBL phenotypes should be distinguished: the multifactorial remnant cholesterol disease and the genetic apoE deficiency disease.


Subject(s)
Apolipoproteins E/deficiency , Cholesterol/blood , Hyperlipoproteinemia Type III/diagnosis , Adult , Apolipoproteins E/blood , Apolipoproteins E/genetics , Diagnosis, Differential , Genetic Testing , Genotyping Techniques , Humans , Hyperlipoproteinemia Type III/blood , Hyperlipoproteinemia Type III/genetics , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
18.
Transl Res ; 240: 33-49, 2022 02.
Article in English | MEDLINE | ID: mdl-34478893

ABSTRACT

Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. Validated with over 30000 histological sections, the model generates a specific pattern of plaques with different risk levels along the same artery depending on their position relative to the cuff. The further upstream of the cuff-implanted artery, the lower the magnitude of shear stress, the more unstable the plaques of higher grade according to AHA classification; with characteristics including greater degree of vascular remodeling, plaque size, plaque vulnerability and inflammation, resulting in higher risk plaques. By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.


Subject(s)
Carotid Arteries/pathology , Plaque, Atherosclerotic/pathology , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Biomarkers/metabolism , Carotid Arteries/physiopathology , Collagen/metabolism , Disease Models, Animal , Disease Progression , Humans , Inflammation/complications , Inflammation/pathology , Lipids/chemistry , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/physiopathology , Plaque, Atherosclerotic/prevention & control , Shear Strength , Stress, Mechanical , Translational Research, Biomedical , Vascular Remodeling
19.
Arterioscler Thromb Vasc Biol ; 42(1): 35-48, 2022 01.
Article in English | MEDLINE | ID: mdl-34758633

ABSTRACT

OBJECTIVE: Animal models of atherosclerosis are used extensively to interrogate molecular mechanisms in serial fashion. We tested whether a novel systems biology approach to integration of preclinical data identifies novel pathways and regulators in human disease. Approach and Results: Of 716 articles published in ATVB from 1995 to 2019 using the apolipoprotein E knockout mouse to study atherosclerosis, data were extracted from 360 unique studies in which a gene was experimentally perturbed to impact plaque size or composition and analyzed using Ingenuity Pathway Analysis software. TREM1 (triggering receptor expressed on myeloid cells) signaling and LXR/RXR (liver X receptor/retinoid X receptor) activation were identified as the top atherosclerosis-associated pathways in mice (both P<1.93×10-4, TREM1 implicated early and LXR/RXR in late atherogenesis). The top upstream regulatory network in mice (sc-58125, a COX2 inhibitor) linked 64.0% of the genes into a single network. The pathways and networks identified in mice were interrogated by testing for associations between the genetically predicted gene expression of each mouse pathway-identified human homolog with clinical atherosclerosis in a cohort of 88 660 human subjects. Homologous human pathways and networks were significantly enriched for gene-atherosclerosis associations (empirical P<0.01 for TREM1 and LXR/RXR pathways and COX2 network). This included 12(60.0%) TREM1 pathway genes, 15(53.6%) LXR/RXR pathway genes, and 67(49.3%) COX2 network genes. Mouse analyses predicted, and human study validated, the strong association of COX2 expression (PTGS2) with increased likelihood of atherosclerosis (odds ratio, 1.68 per SD of genetically predicted gene expression; P=1.07×10-6). CONCLUSIONS: PRESCIANT (Preclinical Science Integration and Translation) leverages published preclinical investigations to identify high-confidence pathways, networks, and regulators of human disease.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Gene Regulatory Networks , Systems Biology , Adult , Aged , Animals , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Female , Genetic Predisposition to Disease , Humans , Male , Mice, Knockout, ApoE , Middle Aged , Phenotype , Plaque, Atherosclerotic , Risk Assessment , Risk Factors , Sex Factors , Species Specificity
20.
Int Immunopharmacol ; 102: 108413, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34891003

ABSTRACT

OBJECT: Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS: ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS: Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION: These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.


Subject(s)
Artesunate/therapeutic use , Atherosclerosis/drug therapy , Macrophages/drug effects , Animals , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Cell Polarity/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophage Activation/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Plaque, Atherosclerotic/drug therapy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...