Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.896
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125801

ABSTRACT

Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.


Subject(s)
Lactoferrin , Mannheimia haemolytica , Metalloproteases , Proteolysis , Lactoferrin/metabolism , Lactoferrin/pharmacology , Metalloproteases/metabolism , Metalloproteases/antagonists & inhibitors , Animals , Apoproteins/metabolism , Apoproteins/chemistry , Molecular Docking Simulation , Sheep , Cattle , Collagenases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Zinc/metabolism
2.
Nature ; 632(8025): 686-694, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112701

ABSTRACT

The dopamine transporter has a crucial role in regulation of dopaminergic neurotransmission by uptake of dopamine into neurons and contributes to the abuse potential of psychomotor stimulants1-3. Despite decades of study, the structure, substrate binding, conformational transitions and drug-binding poses of human dopamine transporter remain unknown. Here we report structures of the human dopamine transporter in its apo state, and in complex with the substrate dopamine, the attention deficit hyperactivity disorder drug methylphenidate, and the dopamine-uptake inhibitors GBR12909 and benztropine. The dopamine-bound structure in the occluded state precisely illustrates the binding position of dopamine and associated ions. The structures bound to drugs are captured in outward-facing or inward-facing states, illuminating distinct binding modes and conformational transitions during substrate transport. Unlike the outward-facing state, which is stabilized by cocaine, GBR12909 and benztropine stabilize the dopamine transporter in the inward-facing state, revealing previously unseen drug-binding poses and providing insights into how they counteract the effects of cocaine. This study establishes a framework for understanding the functioning of the human dopamine transporter and developing therapeutic interventions for dopamine transporter-related disorders and cocaine addiction.


Subject(s)
Benztropine , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors , Dopamine , Humans , Apoproteins/metabolism , Apoproteins/chemistry , Attention Deficit Disorder with Hyperactivity/drug therapy , Benztropine/metabolism , Benztropine/pharmacology , Binding Sites , Cocaine/pharmacology , Cocaine/metabolism , Cocaine-Related Disorders/drug therapy , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacology , Methylphenidate/metabolism , Methylphenidate/pharmacology , Models, Molecular , Piperazines/metabolism , Piperazines/pharmacology , Protein Binding , Protein Conformation
3.
Nature ; 632(8026): 921-929, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048818

ABSTRACT

Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.


Subject(s)
Antidepressive Agents , Cryoelectron Microscopy , Dopamine , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Humans , Allosteric Site , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Atomoxetine Hydrochloride/chemistry , Atomoxetine Hydrochloride/pharmacology , Atomoxetine Hydrochloride/metabolism , Binding Sites , Bupropion/chemistry , Bupropion/metabolism , Bupropion/pharmacology , Citalopram/chemistry , Citalopram/pharmacology , Citalopram/metabolism , Desipramine/pharmacology , Desipramine/chemistry , Dopamine/metabolism , Dopamine/chemistry , Escitalopram/chemistry , Escitalopram/metabolism , Models, Molecular , Norepinephrine/metabolism , Norepinephrine/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/ultrastructure , Potassium/metabolism , Potassium Chloride/pharmacology , Protein Conformation , Sodium/metabolism , Substrate Specificity
4.
Nature ; 632(8026): 930-937, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085602

ABSTRACT

The noradrenaline transporter (also known as norepinephrine transporter) (NET) has a critical role in terminating noradrenergic transmission by utilizing sodium and chloride gradients to drive the reuptake of noradrenaline (also known as norepinephrine) into presynaptic neurons1-3. It is a pharmacological target for various antidepressants and analgesic drugs4,5. Despite decades of research, its structure and the molecular mechanisms underpinning noradrenaline transport, coupling to ion gradients and non-competitive inhibition remain unknown. Here we present high-resolution complex structures of NET in two fundamental conformations: in the apo state, and bound to the substrate noradrenaline, an analogue of the χ-conotoxin MrlA (χ-MrlAEM), bupropion or ziprasidone. The noradrenaline-bound structure clearly demonstrates the binding modes of noradrenaline. The coordination of Na+ and Cl- undergoes notable alterations during conformational changes. Analysis of the structure of NET bound to χ-MrlAEM provides insight into how conotoxin binds allosterically and inhibits NET. Additionally, bupropion and ziprasidone stabilize NET in its inward-facing state, but they have distinct binding pockets. These structures define the mechanisms governing neurotransmitter transport and non-competitive inhibition in NET, providing a blueprint for future drug design.


Subject(s)
Apoproteins , Bupropion , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Piperazines , Thiazoles , Humans , Allosteric Regulation/drug effects , Apoproteins/antagonists & inhibitors , Apoproteins/chemistry , Apoproteins/metabolism , Binding Sites , Biological Transport , Bupropion/chemistry , Bupropion/metabolism , Bupropion/pharmacology , Chlorides/chemistry , Chlorides/metabolism , Conotoxins/chemistry , Conotoxins/metabolism , Conotoxins/pharmacology , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Piperazines/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Protein Binding , Protein Conformation/drug effects , Sodium/chemistry , Sodium/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology
5.
Nature ; 630(8015): 247-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750358

ABSTRACT

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.


Subject(s)
Antidepressive Agents , Cryoelectron Microscopy , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Protein Multimerization , Humans , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Cholesterol/metabolism , Cholesterol/chemistry , Models, Molecular , Norepinephrine/metabolism , Norepinephrine/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/ultrastructure , Protein Binding , Substrate Specificity
6.
Biomol NMR Assign ; 18(1): 93-98, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642264

ABSTRACT

ModA is a soluble periplasmic molybdate-binding protein found in most gram-negative bacteria. It is part of the ABC transporter complex ModABC that moves molybdenum into the cytoplasm, to be used by enzymes that carry out various redox reactions. Since there is no clear analog for ModA in humans, this protein could be a good target for antibacterial drug design. Backbone 1H, 13C and 15N chemical shifts of apo and molybdate-bound ModA from E. coli were assigned at pHs 6.0 and 4.5. In addition, side chain atoms were assigned for apo ModA at pH 6.0. When comparing apo and molybdate-bound ModA at pH 6.0, large chemical shift perturbations are observed, not only in areas near the bound metal, but also in regions that are distant from the metal-binding site. Given the significant conformational change between apo and holo ModA, we might expect the large chemical shift changes to be more widespread; however, since they are limited to specific regions, the residues with large perturbations may reveal allosteric sites that could ultimately be important for the design of antibiotics that target ModA.


Subject(s)
Apoproteins , Molybdenum , Nuclear Magnetic Resonance, Biomolecular , Molybdenum/chemistry , Apoproteins/chemistry , Apoproteins/metabolism , Hydrogen-Ion Concentration , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Solutions , Escherichia coli
7.
Biomed Pharmacother ; 174: 116569, 2024 May.
Article in English | MEDLINE | ID: mdl-38603886

ABSTRACT

Alpha-alpha diaspirin-crosslinked human hemoglobin (DCLHb or ααHb) was a promising early generation red blood cell (RBC) substitute. The DCLHb was developed through a collaborative effort between the United States Army and Baxter Healthcare. The core design feature underlying its development was chemical stabilization of the tetrameric structure of hemoglobin (Hb) to prevent Hb intravascular dimerization and extravasation. DCLHb was developed to resuscitate warfighters on the battlefield, who suffered from life-threatening blood loss. However, extensive research revealed toxic side effects associated with the use of DCLHb that contributed to high mortality rates in clinical trials. This study explores whether scavenging Hb and heme via the apohemoglobin-haptoglobin (apoHb-Hp) complex can reduce DCLHb associated toxicity. Awake Golden Syrian hamsters were equipped with a window chamber model to characterize the microcirculation. Each group was first infused with either Lactated Ringer's or apoHb-Hp followed by a hypovolemic infusion of 10% of the animal's blood volume of DCLHb. Our results indicated that animals pretreated with apoHb-Hb exhibited improved microhemodynamics vs the group pretreated with Lactated Ringer's. While systemic acute inflammation was observed regardless of the treatment group, apoHb-Hp pretreatment lessened those effects with a marked reduction in IL-6 levels in the heart and kidneys compared to the control group. Taken together, this study demonstrated that utilizing a Hb and heme scavenger protein complex significantly reduces the microvasculature effects of ααHb, paving the way for improved HBOC formulations. Future apoHb-Hp dose optimization studies may identify a dose that can completely neutralize DCLHb toxicity.


Subject(s)
Haptoglobins , Hemoglobins , Animals , Hemoglobins/pharmacology , Hemoglobins/metabolism , Humans , Haptoglobins/metabolism , Male , Mesocricetus , Apoproteins/chemistry , Apoproteins/pharmacology , Blood Substitutes/pharmacology , Blood Substitutes/chemistry , Cross-Linking Reagents/chemistry , Cricetinae
8.
J Mol Biol ; 436(17): 168545, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38508305

ABSTRACT

A single protein structure is rarely sufficient to capture the conformational variability of a protein. Both bound and unbound (holo and apo) forms of a protein are essential for understanding its geometry and making meaningful comparisons. Nevertheless, docking or drug design studies often still consider only single protein structures in their holo form, which are for the most part rigid. With the recent explosion in the field of structural biology, large, curated datasets are urgently needed. Here, we use a previously developed application (AHoJ) to perform a comprehensive search for apo-holo pairs for 468,293 biologically relevant protein-ligand interactions across 27,983 proteins. In each search, the binding pocket is captured and mapped across existing structures within the same UniProt, and the mapped pockets are annotated as apo or holo, based on the presence or absence of ligands. We assemble the results into a database, AHoJ-DB (www.apoholo.cz/db), that captures the variability of proteins with identical sequences, thereby exposing the agents responsible for the observed differences in geometry. We report several metrics for each annotated pocket, and we also include binding pockets that form at the interface of multiple chains. Analysis of the database shows that about 24% of the binding sites occur at the interface of two or more chains and that less than 50% of the total binding sites processed have an apo form in the PDB. These results can be used to train and evaluate predictors, discover potentially druggable proteins, and reveal protein- and ligand-specific relationships that were previously obscured by intermittent or partial data. Availability: www.apoholo.cz/db.


Subject(s)
Databases, Protein , Protein Binding , Protein Conformation , Proteins , Ligands , Binding Sites , Proteins/chemistry , Proteins/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Models, Molecular , Humans , Computational Biology/methods
9.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141010, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38490456

ABSTRACT

The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.


Subject(s)
Guanidine , Metallothionein , Protein Unfolding , Hydrogen-Ion Concentration , Humans , Metallothionein/chemistry , Metallothionein/metabolism , Guanidine/chemistry , Cysteine/chemistry , Circular Dichroism , Hot Temperature , Apoproteins/chemistry , Apoproteins/metabolism , Protein Structure, Secondary , Protein Denaturation , Intrinsically Disordered Proteins/chemistry
10.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
11.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Article in English | MEDLINE | ID: mdl-38321146

ABSTRACT

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Subject(s)
Bacterial Proteins , Endonucleases , Pseudomonas syringae , Pseudomonas syringae/chemistry , Pseudomonas syringae/enzymology , Pseudomonas syringae/virology , Bacterial Proteins/chemistry , Endonucleases/chemistry , Ligands , Models, Chemical , Enzyme Activation , DNA/chemistry , DNA/metabolism , Nucleotides, Cyclic/chemistry , Dinucleoside Phosphates/chemistry , Apoproteins/chemistry , Bacteriophages/physiology
12.
Molecules ; 28(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067466

ABSTRACT

To date, most research on amyloid aggregation has focused on describing the structure of amyloids and the kinetics of their formation, while the conformational stability of fibrils remains insufficiently explored. The aim of this work was to investigate the effect of amino acid substitutions on the stability of apomyoglobin (ApoMb) amyloids. A study of the amyloid unfolding of ApoMb and its six mutant variants by urea has been carried out. Changes in the structural features of aggregates during unfolding were recorded by far-UV CD and native electrophoresis. It was shown that during the initial stage of denaturation, amyloids' secondary structure partially unfolds. Then, the fibrils undergo dissociation and form intermediate aggregates weighing approximately 1 MDa, which at the last stage of unfolding decompose into 18 kDa monomeric unfolded molecules. The results of unfolding transitions suggest that the stability of the studied amyloids relative to the intermediate aggregates and of the latter relative to unfolded monomers is higher for ApoMb variants with substitutions that increase the hydrophobicity of the residues. The results presented provide a new insight into the mechanism of stabilization of protein aggregates and can serve as a base for further investigations of the amyloids' stability.


Subject(s)
Apoproteins , Myoglobin , Amino Acid Substitution , Myoglobin/chemistry , Protein Structure, Secondary , Apoproteins/chemistry , Amyloid/genetics , Protein Folding , Protein Denaturation
13.
Biochemistry (Mosc) ; 88(11): 1905-1909, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105207

ABSTRACT

In this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.


Subject(s)
Apoproteins , Protein Folding , Apoproteins/genetics , Apoproteins/chemistry , Myoglobin/chemistry , Protein Structure, Secondary , Protein Conformation
14.
J Biol Inorg Chem ; 28(8): 737-749, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957357

ABSTRACT

Circular permutation (CP) is a technique by which the primary sequence of a protein is rearranged to create new termini. The connectivity of the protein is altered but the overall protein structure generally remains unperturbed. Understanding the effect of CP can help design robust proteins for numerous applications such as in genetic engineering, optoelectronics, and improving catalytic activity. Studies on different protein topologies showed that CP usually affects protein stability as well as unfolding rates. Though a significant number of proteins contain metals or other cofactors, reports of metalloprotein CPs are rare. Thus, we chose a bacterial metalloprotein, azurin, and its CP within the metal-binding site (cpF114). We studied the stabilities, folding, and unfolding rates of apo- and Zn2+-bound CP azurin using fluorescence and circular dichroism. The introduced CP had destabilizing effects on the protein. Also, the folding of the Zn2+-CP protein was much slower than that of the Zn2+-WT or apo-protein. We compared this study to our previously reported azurin-cpN42, where we had observed an equilibrium and kinetic intermediate. cpF114 exhibits an apparent two-state equilibrium unfolding but has an off-pathway kinetic intermediate. Our study hinted at CP as a method to modify the energy landscape of proteins to alter their folding pathways. WT azurin, being a faster folder, may have evolved to optimize the folding rate of metal-bound protein compared to its CPs, albeit all of them have the same structure and function. Our study underscores that protein sequence and protein termini positions are crucial for metalloproteins. TOC Figure. (Top) Zn2+-azurin WT structure (PDB code: 1E67) and 2-D topology diagram of Zn2+-cpF114 azurin. (Bottom) Cartoon diagram representing folding (red arrows) and unfolding (blue arrows) of apo- and Zn2+- WT and cpF114 azurins. The width of the arrows represents the rate of the corresponding processes.


Subject(s)
Azurin , Azurin/genetics , Azurin/chemistry , Azurin/metabolism , Protein Folding , Catalytic Domain , Apoproteins/chemistry , Metals , Circular Dichroism , Kinetics
15.
Nature ; 621(7977): 154-161, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37494956

ABSTRACT

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.


Subject(s)
Argonaute Proteins , Prokaryotic Cells , Apoproteins/chemistry , Apoproteins/metabolism , Argonaute Proteins/chemistry , Argonaute Proteins/classification , Argonaute Proteins/metabolism , DNA/metabolism , Enzyme Activation , NAD/metabolism , Prokaryotic Cells/metabolism , RNA/metabolism
16.
Int J Biol Macromol ; 245: 125549, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37356686

ABSTRACT

Apomyoglobin (apoMb), a model protein in biochemistry, exhibits a strong propensity to bind various ligands, which makes it a good candidate as a carrier of bioactive hydrophobic drugs. The stability of its hydrophobic pocket determines its potential as a carrier of bioactive compounds. High pressure (HP) is a potent tool for studying protein stability, revealing the specific role of hydrophobic cavities in unfolding. We probed the effects of biliverdin (BV) binding and its complex with Zn2+ ions on the structure and HP stability of apoMb. CD spectroscopy and SAXS measurements revealed that BV and BV-Zn2+ complexes make the apoMb structure more compact with higher α-helical content. We performed in situ HP measurements of apoMb intrinsic fluorescence to demonstrate the ability of BV to stabilise apoMb structure at HP conditions. Furthermore, the presence of Zn2+ within the apoMb-BV complex significantly enhances the BV stabilisation effect. In situ visible absorption study of BV chromophore confirmed the ability of Zn2+ to increase the stability of apoMb-BV complex under HP: the onset of complex dissociation is shifted by ∼100 MPa in presence of Zn2+. By combining HP-fluorescence and HP-visible absorption spectroscopy, our strategy highlights the crucial role of tetrapyrrole-metal complexes in stabilising apoMb hydrophobic pocket.


Subject(s)
Biliverdine , Myoglobin , Biliverdine/pharmacology , Scattering, Small Angle , X-Ray Diffraction , Myoglobin/chemistry , Apoproteins/chemistry , Ions , Zinc/pharmacology
17.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175379

ABSTRACT

Protein folding is essential for a polypeptide chain to acquire its proper structure and function. Globins are a superfamily of ubiquitous heme-binding α-helical proteins whose function is principally to regulate oxygen homoeostasis. In this review, we explore the hierarchical helical formation in the globin proteins apomyoglobin and leghemoglobin, and we discuss the existence of non-native and misfolded structures occurring during the course of folding to its native state. This review summarizes the research aimed at characterizing and comparing the equilibrium and kinetic intermediates, as well as delineating the complete folding pathway at a molecular level, in order to answer the following questions: "What is the mechanism of misfolding via a folding intermediate? Does the non-native structure stabilize the contemporary intermediate structure? Does the non-native structure induce slower folding?" The role of the non-native structures in the folding intermediate related to misfolding is also discussed.


Subject(s)
Apoproteins , Myoglobin , Myoglobin/chemistry , Apoproteins/chemistry , Protein Folding , Leghemoglobin/metabolism , Kinetics
18.
J Phys Chem B ; 126(46): 9539-9548, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36354189

ABSTRACT

The earliest events in the folding of a protein are in general poorly understood. We used NMR R2 relaxation dispersion experiments to study transient local collapse events in the unfolded-state (U) conformational ensemble of apomyoglobin (apoMb). Local residual secondary structure (seen in regions corresponding to the A, D, E, and H helices of the folded protein) is largely unchanged over the pH range of 2.3-2.75, yet a significant pH-dependent increase in the conformational exchange contribution to the R2 relaxation rate (Rex) indicates that transient intramolecular contacts occur on a microsecond to millisecond time scale at pH 2.75. A comparison of 15N and 13CO relaxation dispersion data at pH 2.75 for residues in the A, B, G, and H regions, which participate in the earliest folding intermediates, indicates that chain collapse and secondary structure formation are rapid and concomitant. Increasingly stabilizing conditions (lower temperature, higher pH) result in the observation of a relaxation dispersion in the C, CD, and E regions of the protein, which are known to fold at later stages. Mutation of Trp14 in the A-helix region to Ala eliminates conformational exchange throughout the protein, and the mutation of hydrophobic residues in other regions results in the selective inhibition of conformational exchange in the B, G, or H regions. The R2 dispersion data for WT apoMb at pH 2.75 and 10 °C are best fit to a four-state model ABGH ⇆ AGH ⇆ U ⇆ ABCD that includes on-pathway (AGH and ABGH) and off-pathway (ABCD) transiently folded states, both of which are required to explain the behavior of the mutant proteins. The off-pathway intermediate is destabilized at higher temperatures. Our analysis provides insights into the earliest stages of apoMb folding where the collapsing polypeptide chain samples both productive and nonproductive states with stabilized secondary structure.


Subject(s)
Apoproteins , Protein Folding , Apoproteins/chemistry , Myoglobin/chemistry , Protein Structure, Secondary , Magnetic Resonance Spectroscopy , Mutant Proteins , Kinetics
19.
Nature ; 609(7927): 616-621, 2022 09.
Article in English | MEDLINE | ID: mdl-35917926

ABSTRACT

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Biological Transport/drug effects , Cryoelectron Microscopy , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
20.
Nature ; 606(7916): 1021-1026, 2022 06.
Article in English | MEDLINE | ID: mdl-35580629

ABSTRACT

Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually1,2. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes3. However, the molecular basis for the virus-transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs.


Subject(s)
Cryoelectron Microscopy , Hepatitis B virus , Organic Anion Transporters, Sodium-Dependent , Receptors, Virus , Symporters , Animals , Apoproteins/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Apoproteins/ultrastructure , Cattle , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Humans , Mutation , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/ultrastructure , Rats , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Receptors, Virus/ultrastructure , Sodium/metabolism , Symporters/chemistry , Symporters/genetics , Symporters/metabolism , Symporters/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL