Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143.397
Filter
1.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
2.
Pak J Pharm Sci ; 37(2(Special)): 423-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822545

ABSTRACT

This study assessed the inhibitory effect of sodium valproate (VPA) on apoptosis of cardiomyocytes in lethally scalded rats. The model of a 50% total body surface area (TBSA) third-degree full-thickness scald was produced, 48 male SD rats were randomly divided into three groups (n = 16), the sham group and the scald group were given an intraperitoneal injection of 0.25ml of saline, the scald +VPA group was given an intraperitoneal injection of VPA (300 mg/kg) after scalded, Each group was subdivided into two subgroups (n=8) according to the two observation time points of 3h and 6h after scald. Apoptotic cardiomyocytes were observed, and myocardial tissue levels of nitric oxide (NO), cysteine protease-3 (caspase-3) activity, hypoxia-inducible factor-1α (HIF-1α), inducible nitric oxide synthase (iNOS), BCL2/adenovirus E1B interacting protein 3 (BNIP3) and caspase-3 protein were measured. Compared with sham scald group, severe scald elevated CK-MB, cardiomyocyte apoptosis rate, caspase-3 activity and protein levels, NO content, and HIF-1α signalling pathway proteins; whereas VPA decreased CK-MB, cardiomyocyte apoptosis rate and inhibited HIF-1α signalling pathway protein expression. In conclusion, these results suggested that VPA inhibited early cardiomyocyte apoptosis and attenuated myocardial injury in lethally scalded rats, which may be related to the regulation of the HIF-1α signalling pathway.


Subject(s)
Apoptosis , Burns , Caspase 3 , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Cardiac , Nitric Oxide , Rats, Sprague-Dawley , Valproic Acid , Animals , Valproic Acid/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Male , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Burns/drug therapy , Burns/metabolism , Burns/pathology , Caspase 3/metabolism , Nitric Oxide/metabolism , Rats , Nitric Oxide Synthase Type II/metabolism , Membrane Proteins/metabolism , Disease Models, Animal , Mitochondrial Proteins
3.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822888

ABSTRACT

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Subject(s)
Astrocytes , Cilia , Mice, Knockout , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Cilia/metabolism , Cilia/drug effects , Mice , Complement C3/metabolism , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Apoptosis/drug effects
4.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
5.
PeerJ ; 12: e17299, 2024.
Article in English | MEDLINE | ID: mdl-38799055

ABSTRACT

Background: Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim: This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results: The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion: Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.


Subject(s)
Dental Pulp , Galactose , Myocytes, Cardiac , Rats, Sprague-Dawley , Animals , Male , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/transplantation , Myocytes, Cardiac/drug effects , Dental Pulp/cytology , Stem Cell Transplantation/methods , Aging/physiology , Sirtuin 1/metabolism , Cell Differentiation/drug effects , Connexin 43/metabolism , Disease Models, Animal , Stem Cells/metabolism , Stem Cells/cytology , Apoptosis/drug effects
6.
Med Sci Monit ; 30: e945269, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808453

ABSTRACT

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Haijin Huang, Cuicui Hu, Lin Xu, Xiaoping Zhu, Lili Zhao, Jia Min. The Effects of Hesperidin on Neuronal Apoptosis and Cognitive Impairment in the Sevoflurane Anesthetized Rat are Mediated Through the PI3/Akt/PTEN and Nuclear Factor-kappaB (NF-kappaB) Signaling Pathways. Med Sci Monit, 2020; 26: e920522. DOI: 10.12659/MSM.920522.


Subject(s)
Apoptosis , Cognitive Dysfunction , Hesperidin , NF-kappa B , Neurons , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Sevoflurane , Signal Transduction , Animals , Sevoflurane/pharmacology , Apoptosis/drug effects , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism , Neurons/drug effects , Neurons/metabolism , Cognitive Dysfunction/metabolism , Rats , Hesperidin/pharmacology , Male , Phosphatidylinositol 3-Kinases/metabolism
7.
Eur J Pharmacol ; 974: 176633, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703975

ABSTRACT

Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.


Subject(s)
Disease Models, Animal , Heart Arrest , Mitophagy , Rats, Sprague-Dawley , Ruthenium Red , Animals , Mitophagy/drug effects , Heart Arrest/complications , Heart Arrest/drug therapy , Heart Arrest/metabolism , Heart Arrest/physiopathology , Rats , Male , Ruthenium Red/pharmacology , Ruthenium Red/therapeutic use , Oxidative Stress/drug effects , Ubiquitin Thiolesterase/metabolism , Cardiopulmonary Resuscitation , Up-Regulation/drug effects , Myocardium/pathology , Myocardium/metabolism , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology
8.
Dev Comp Immunol ; 157: 105191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705263

ABSTRACT

Ficus hirta Vahl. (FhV) has been shown to have antimicrobial and antiviral efficacy. To further ascertain the pharmacological properties of FhV., and to search for alternatives to antibiotics. An in vitro experiment was carried out to evaluate what influence FhV. would have on LPS-induced apoptosis. In this study, Fas, an apoptosis receptor, was cloned, which included a 5'-UTR of 39 bp, an ORF of 951 bp, a protein of 316 amino acids, and a 3'-UTR of 845 bp. EcFas was most strongly expressed in the spleen tissue of orange-spotted groupers. In addition, the apoptosis of fish spleen cells induced by LPS was concentration-dependent. Interestingly, appropriate concentrations of FhV. alleviated LPS-induced apoptosis. Inhibition of miR-411 further decreased the inhibitory effect of Fas on apoptosis, which reduced Bcl-2 expression and mitochondrial membrane potential, enhanced the protein expression of Bax and Fas. More importantly, the FhV. could activate miR-411 to improve this effect. In addition, luciferase reporter assays showed that miR-411 binds to Fas 3'-UTR to inhibit Fas expression. These findings provide evidence that FhV. alleviates LPS-induced apoptosis by activating miR-411 to inhibit Fas expression and, therefore, provided possible strategies for bacterial infections in fish.


Subject(s)
Apoptosis , Fish Proteins , Lipopolysaccharides , MicroRNAs , Spleen , Animals , Apoptosis/drug effects , Lipopolysaccharides/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Spleen/metabolism , Spleen/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , fas Receptor/metabolism , fas Receptor/genetics , Fish Diseases/immunology , Down-Regulation , Bass/immunology , Bass/genetics , Cells, Cultured , 3' Untranslated Regions/genetics , Perciformes/immunology
9.
PeerJ ; 12: e17252, 2024.
Article in English | MEDLINE | ID: mdl-38708345

ABSTRACT

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Subject(s)
Cystatin C , Macrophages , Nitric Oxide , Porphyromonas gingivalis , Reactive Oxygen Species , Porphyromonas gingivalis/immunology , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cystatin C/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Cytokines/metabolism , Periodontitis/microbiology , Periodontitis/immunology , Periodontitis/drug therapy , Periodontitis/pathology , Apoptosis/drug effects
10.
Cell Death Dis ; 15(5): 380, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816370

ABSTRACT

Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.


Subject(s)
Casein Kinase II , Cellular Senescence , DNA Damage , Longevity , Membrane Proteins , Metalloendopeptidases , Animals , Cellular Senescence/drug effects , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Mice , Longevity/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA Damage/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/deficiency , Apoptosis/drug effects , Chromobox Protein Homolog 5/metabolism , Histones/metabolism , Mice, Knockout , Fibroblasts/metabolism , Fibroblasts/drug effects , Chromosomal Proteins, Non-Histone/metabolism , Humans , Phosphorylation/drug effects
11.
Sci Rep ; 14(1): 12431, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816406

ABSTRACT

Pulmonary arterial hypertension (PAH) is a fatal disease featured by high morbidity and mortality. Although Cordycepin is known for its anti-inflammatory, antioxidant and immune-enhancing effects, its role in PAH treatment and the underlying mechanisms remain unclear. The therapeutic effects of Cordycepin on rats with PAH were investigated using a monocrotaline (MCT)-induced rat model. The metabolic effects of Cordycepin were assessed based on the plasma metabolome. The potential mechanisms of Cordycepin in PAH treatment were investigated through transcriptome sequencing and validated in pulmonary artery smooth muscle cells (PASMC). Evaluations included hematoxylin and eosin staining for pulmonary vascular remodeling, CCK-8 assay, EDU, and TUNEL kits for cell viability, proliferation, and apoptosis, respectively, and western blot for protein expression. Cordycepin significantly reduced right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in PAH rats, and mitigated pulmonary vascular remodeling. Plasma metabolomics showed that Cordycepin could reverse the metabolic disorders in the lungs of MCT-induced PAH rats, particularly impacting linoleic acid and alpha-linolenic acid metabolism pathways. Transcriptomics revealed that the P53 pathway might be the primary pathway involved, and western blot results showed that Cordycepin significantly increased P53 and P21 protein levels in lung tissues. Integrated analysis of transcriptomics and metabolomics suggested that these pathways were mainly enriched in linoleic acid metabolism and alpha-linolenic acid metabolism pathway. In vitro experiments demonstrated that Cordycepin significantly inhibited the PDGFBB (PD)-induced abnormal proliferation and migration of PASMC and promoted PD-induced apoptosis. Meanwhile, Cordycepin enhanced the expression levels of P53 and P21 proteins in PD-insulted PASMC. However, inhibitors of P53 and P21 eliminated these effects of Cordycepin. Cordycepin may activate the P53-P21 pathway to inhibit abnormal proliferation and migration of PASMC and promote apoptosis, offering a potential approach for PAH treatment.


Subject(s)
Apoptosis , Cell Proliferation , Deoxyadenosines , Pulmonary Arterial Hypertension , Animals , Deoxyadenosines/pharmacology , Deoxyadenosines/therapeutic use , Rats , Male , Apoptosis/drug effects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Cell Proliferation/drug effects , Transcriptome/drug effects , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Monocrotaline , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Disease Models, Animal , Vascular Remodeling/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Linoleic Acid/pharmacology , Hypertrophy, Right Ventricular/drug therapy , Hypertrophy, Right Ventricular/metabolism , Gene Expression Profiling
12.
Sci Rep ; 14(1): 12475, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816444

ABSTRACT

Sirtuin 3 (SIRT3) belongs to the Sirtuin protein family, which consists of NAD+-dependent lysine deacylase, involved in the regulation of various cellular activities. Dysregulation of SIRT3 activity has been linked to several types of cancer, including breast cancer. Because of its ability to stimulate adaptive metabolic pathways, it can aid in the survival and proliferation of breast cancer cells. Finding new chemical compounds targeted towards SIRT3 was the primary goal of the current investigation. Virtual screening of ~ 800 compounds using molecular docking techniques yielded 8 active hits with favorable binding affinities and poses. Docking studies verified that the final eight compounds formed stable contacts with the catalytic domain of SIRT3. Those compounds have good pharmacokinetic/dynamic properties and gastrointestinal absorption. Based on excellent pharmacokinetic and pharmacodynamic properties, two compounds (MI-44 and MI-217) were subjected to MD simulation. Upon drug interaction, molecular dynamics simulations demonstrate mild alterations in the structure of proteins and stability. Binding free energy calculations revealed that compounds MI-44 (- 45.61 ± 0.064 kcal/mol) and MI-217 (- 41.65 ± 0.089 kcal/mol) showed the maximum energy, suggesting an intense preference for the SIRT3 catalytic site for attachment. The in-vitro MTT assay on breast cancer cell line (MDA-MB-231) and an apoptotic assay for these potential compounds (MI-44/MI-217) was also performed, with flow cytometry to determine the compound's ability to cause apoptosis in breast cancer cells. The percentage of apoptotic cells (including early and late apoptotic cells) increased from 1.94% in control to 79.37% for MI-44 and 85.37% for MI-217 at 15 µM. Apoptotic cell death was effectively induced by these two compounds in a flow cytometry assay indicating them as a good inhibitor of human SIRT3. Based on our findings, MI-44 and MI-217 merit additional investigation as possible breast cancer therapeutics.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Sirtuin 3 , Sirtuin 3/metabolism , Sirtuin 3/antagonists & inhibitors , Sirtuin 3/chemistry , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Cell Proliferation/drug effects , Protein Binding
13.
BMC Cardiovasc Disord ; 24(1): 275, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807081

ABSTRACT

BACKGROUND: Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS: Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION: This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.


Subject(s)
Apoptosis , Atherosclerosis , Autophagy , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Aortic Diseases/metabolism , Mice, Inbred C57BL , Lipoproteins, LDL/metabolism , Male , Cells, Cultured , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Aorta/pathology , Aorta/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , Apolipoproteins E
14.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821596

ABSTRACT

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Subject(s)
Apoptosis , Ferroptosis , Prostatic Neoplasms , Reactive Oxygen Species , Humans , Male , Ferroptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Pyridones/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Pyrones
15.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821617

ABSTRACT

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Caffeic Acids , Electromagnetic Fields , Phenylethyl Alcohol , Humans , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Signal Transduction/drug effects
16.
Anticancer Res ; 44(6): 2487-2495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821618

ABSTRACT

BACKGROUND/AIM: The increasing incidence of renal cell carcinoma (RCC) and its associated bone metastasis pose challenges in surgical interventions, warranting the exploration of novel therapeutic approaches. Therefore, this study aimed to assess the impact of hematogenously administering acridine orange (AO) alone and in combination with zoledronic acid (ZA) on bone metastasis in RCC. MATERIALS AND METHODS: RENCA cells (1.0×106 cells/10 µl) were directly injected into the right femur of male BALB/c mice. The mice were categorized into four groups based on the applied therapeutic intervention and were euthanized after five weeks. Micro-computed tomography was performed to quantify the extent of periosteal reaction, indicative of bone metastasis, along the entire length of the femur. Tumor weight and volume were measured at euthanization. Hematoxylin and eosin staining was used to examine the extent of tumor development in the bone. Apoptotic cell, osteoclast, and vascular endothelial growth factor (VEGF)-positive cell counts were assessed using TdT-mediated dUTP-biotin nick end labeling, tartrate-resistant acid phosphatase staining, and VEGF staining, respectively. RESULTS: The periosteal reaction was significantly reduced in the intervention groups compared to the control group (p<0.05). The apoptotic cell numbers in the intervention groups surpassed that in the control group (p<0.05), whereas those of osteoclasts and VEGF-positive cells in the intervention groups were lower than those in the control group (p<0.05). CONCLUSION: AO hinders bone metastasis progression in RCC, and combination therapy with ZA may be more effective than AO administration alone.


Subject(s)
Acridine Orange , Apoptosis , Bone Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Mice, Inbred BALB C , Zoledronic Acid , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Bone Neoplasms/secondary , Bone Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Male , Mice , Apoptosis/drug effects , Cell Line, Tumor , Humans , Vascular Endothelial Growth Factor A/metabolism , Imidazoles/pharmacology , X-Ray Microtomography , Xenograft Model Antitumor Assays
17.
Anticancer Res ; 44(6): 2307-2323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821627

ABSTRACT

BACKGROUND/AIM: Pancreatic cancer is an aggressive type of cancer, with a dismally low survival rate of <5%. FDA-approved drugs like gemcitabine have shown little therapeutic success, prolonging survival by a mere six months. Isoflavones, such as biochanin A and daidzein, are known to exhibit anti-cancer activity, whereas statins reportedly have anti-proliferative effects. This study investigated the effects of combination treatment of biochanin A and atorvastatin on pancreatic cancer cells. MATERIALS AND METHODS: Pancreatic cancer cells AsPC-1, PANC-1, and MIA PaCa-2 were procured from ATCC. The cell viability studies were carried out using MTT & cell count assays. Flow cytometry was used to study cell apoptosis whereas cell metabolism studies were carried out using the Seahorse Mito stress test and XF-PMP assay. The effects of treatment on cell signaling pathways & cell cycle associated proteins were investigated using western blot whereas invasiveness of cancer cells was evaluated using gelatin zymography. RESULTS: The combination treatment decreased the survival and enhanced pro-apoptotic responses compared to single treatments in the pancreatic cancer cells. In PANC-1 cells, the combination treatment decreased invasiveness, reduced expression of activated STAT3 and expression of critical mediators of cell cycle progression. Furthermore, the combination treatment induced a differential inhibition of respiratory complexes in the pancreatic cancer cells. CONCLUSION: The combination treatment of biochanin A and atorvastatin exerts enhanced anti-cancer effects, inducing apoptosis, down-regulating cell cycle associated proteins and invasiveness in pancreatic cancer cells and merits further investigation for new, improved treatments for pancreatic cancer.


Subject(s)
Apoptosis , Atorvastatin , Cell Cycle Checkpoints , Energy Metabolism , Genistein , Mitochondria , Pancreatic Neoplasms , Humans , Genistein/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Atorvastatin/pharmacology , Cell Line, Tumor , Mitochondria/drug effects , Mitochondria/metabolism , Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Signal Transduction/drug effects
18.
Eur J Med Chem ; 272: 116495, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38744089

ABSTRACT

Angiogenesis inhibitors and photosensitizers are pivotal in tumor clinical treatment, yet their utilization is constrained. Herein, eleven novel angiogenesis inhibitors were developed through hybridization strategy to overcome their clinical limitations. These title compounds boast excitation wavelengths within the "therapeutic window", enabling deep tissue penetration. Notably, they could generate superoxide anion radicals via the Type I mechanism, with compound 36 showed the strongest superoxide anion radical generating capacity. Biological evaluation demonstrated remarkable cellular activity of all the title compounds, even under hypoxic conditions. Among them, compound 36 stood out for its superior anti-proliferative activity in both normoxic and hypoxic environments, surpassing individual angiogenesis inhibitors and photosensitizers. Compound 36 induced cell apoptosis via superoxide anion radical generation, devoid of dark toxicity. Molecular docking revealed that the target-recognizing portion of compound 36 was able to insert into the ATP binding pocket of the target protein similar to sorafenib. Collectively, our results suggested that hybridization of angiogenesis inhibitors and photosensitizers was a potential strategy to address the limitations of their clinical use.


Subject(s)
Angiogenesis Inhibitors , Cell Proliferation , Molecular Docking Simulation , Photosensitizing Agents , Superoxides , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Humans , Superoxides/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects
19.
Transpl Immunol ; 84: 102051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744348

ABSTRACT

BACKGROUND: Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF. METHODS: We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression. RESULTS: Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all p < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all p < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all p < 0.05), suggesting the inhibition of ovarian cell apoptosis. CONCLUSION: Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.


Subject(s)
Apoptosis , Cyclophosphamide , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Swine, Miniature , Animals , Female , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/chemically induced , Swine , Mesenchymal Stem Cell Transplantation/methods , Humans , Apoptosis/drug effects , Umbilical Cord/cytology , Cells, Cultured , Estradiol/blood , Ovary/pathology
20.
Theriogenology ; 224: 58-67, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749260

ABSTRACT

Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.


Subject(s)
Melatonin , Ovarian Follicle , Oxidative Stress , Vitrification , Animals , Female , Cats , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovarian Follicle/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Ovary/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Tissue Culture Techniques/veterinary , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...