Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.101
Filter
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822973

ABSTRACT

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
2.
Med Sci Monit ; 30: e943523, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824386

ABSTRACT

BACKGROUND Hepatocellular carcinoma (HCC) poses a significant threat to human life and is the most prevalent form of liver cancer. The intricate interplay between apoptosis, a common form of programmed cell death, and its role in immune regulation stands as a crucial mechanism influencing tumor metastasis. MATERIAL AND METHODS Utilizing HCC samples from the TCGA database and 61 anoikis-related genes (ARGs) sourced from GeneCards, we analyzed the relationship between ARGs and immune cell infiltration in HCC. Subsequently, we identified long non-coding RNAs (lncRNAs) associated with ARGs, using the least absolute shrinkage and selection operator (LASSO) regression analysis to construct a robust prognostic model. The predictive capabilities of the model were then validated through examination in a single-cell dataset. RESULTS Our constructed prognostic model, derived from lncRNAs linked to ARGs, comprised 11 significant lncRNAs: NRAV, MCM3AP-AS1, OTUD6B-AS1, AC026356.1, AC009133.1, DDX11-AS1, AC108463.2, MIR4435-2HG, WARS2-AS1, LINC01094, and HCG18. The risk score assigned to HCC samples demonstrated associations with immune indicators and the infiltration of immune cells. Further, we identified Annexin A5 (ANXA5) as the pivotal gene among ARGs, with it exerting a prominent role in regulating the lncRNA gene signature. Our validation in a single-cell database elucidated the involvement of ANXA5 in immune cell infiltration, specifically in the regulation of mononuclear cells. CONCLUSIONS This study delves into the intricate correlation between ARGs and immune cell infiltration in HCC, culminating in the development of a novel prognostic model reliant on 11 ARGs-associated lncRNAs. Furthermore, our findings highlight ANXA5 as a promising target for immune regulation in HCC, offering new perspectives for immune therapy in the context of HCC.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , Prognosis , Databases, Genetic , Biomarkers, Tumor/genetics , Anoikis/genetics , Apoptosis/genetics
3.
Front Immunol ; 15: 1411161, 2024.
Article in English | MEDLINE | ID: mdl-38799437

ABSTRACT

Instruction: Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Programmed cell death (PCD) is a critical process in suppressing tumor growth, and alterations in PCD-related genes may contribute to the progression of HBV-HCC. This study aims to develop a prognostic model that incorporates genomic and clinical information based on PCD-related genes, providing novel insights into the molecular heterogeneity of HBV-HCC through bioinformatics analysis and experimental validation. Methods: In this study, we analyzed 139 HBV-HCC samples from The Cancer Genome Atlas (TCGA) and validated them with 30 samples from the Gene Expression Omnibus (GEO) database. Various bioinformatics tools, including differential expression analysis, gene set variation analysis, and machine learning algorithms were used for comprehensive analysis of RNA sequencing data from HBV-HCC patients. Furthermore, among the PCD-related genes, we ultimately chose DLAT for further research on tissue chips and patient cohorts. Besides, immunohistochemistry, qRT-PCR and Western blot analysis were conducted. Results: The cluster analysis identified three distinct subgroups of HBV-HCC patients. Among them, Cluster 2 demonstrated significant activation in DNA replication-related pathways and tumor-related processes. Analysis of copy number variations (CNVs) of PCD-related genes also revealed distinct patterns in the three subgroups, which may be associated with differences in pathway activation and survival outcomes. DLAT in tumor tissues of HBV-HCC patients is upregulated. Discussion: Based on the PCD-related genes, we developed a prognostic model that incorporates genomic and clinical information and provided novel insights into the molecular heterogeneity of HBV-HCC. In our study, we emphasized the significance of PCD-related genes, particularly DLAT, which was examined in vitro to explore its potential clinical implications.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/virology , Prognosis , Hepatitis B virus/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B/virology , Apoptosis/genetics , Middle Aged , DNA Copy Number Variations , Computational Biology/methods , Biomarkers, Tumor/genetics , Gene Expression Profiling
4.
Nat Commun ; 15(1): 4616, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816355

ABSTRACT

Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma , Positive Transcriptional Elongation Factor B , Humans , Glioma/radiotherapy , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Animals , Positive Transcriptional Elongation Factor B/metabolism , Positive Transcriptional Elongation Factor B/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/radiation effects , Mice , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription, Genetic/radiation effects , Apoptosis/radiation effects , Apoptosis/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , DNA Repair/radiation effects , Xenograft Model Antitumor Assays
5.
BMC Oral Health ; 24(1): 625, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807101

ABSTRACT

BACKGROUND: Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS: FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS: FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION: FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , MicroRNAs , Mouth Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
6.
Anticancer Res ; 44(6): 2445-2451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821626

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide. Understanding the mechanisms of lung cancer development is vital for targeted therapy advancements. This article explores the little-known role of the guanylate kinase-associated protein (GKAP), encoded by the Disks large-associated protein 1 (DLGAP1) gene, in NSCLC along with assessing microRNA-30a-5p's influence on DLGAP1 gene expression in the A549 cell line. MATERIALS AND METHODS: Experiments were conducted on A549 cells transfected with synthetic oligonucleotides. The luciferase assay was employed to confirm the binding site of miR-30a-5p to the 3'UTR of DLGAP1 mRNA. The role of miRNA-30a-5p mimic in regulating potential target gene expression at the protein and mRNA levels was studied by performing RT-qPCR and western blot analyses. The effects of DLGAP1 knockdown and miRNA-30a-5p mimic on cell viability and the cell cycle were evaluated using the MTT test and flow cytometry with annexin/iodide cell staining. RESULTS: The luciferase assay indicated that miR-30a-5p has the ability to bind to the 3'UTR of DLGAP1 mRNA. RT-qPCR revealed that the overexpression of miR-30a-5p down-regulates DLGAP1 mRNA. Western blot analysis indicated that miR-30a-5p slightly reduces the level of the GKAP protein. Knockdown of DLGAP1 with synthetic oligonucleotides, as well as transfection with a miR-30a-5p mimic, significantly attenuates cell proliferation and increases the number of cells in the early and late stages of apoptosis. CONCLUSION: Our findings reveal the antiproliferative effect of miR-30a-5p and DLGAP1 gene knockdown on A549 cancer cells, implying that these elements could be considered as therapeutic targets for personalized medicine in NSCLC patients.


Subject(s)
3' Untranslated Regions , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , A549 Cells , 3' Untranslated Regions/genetics , Apoptosis/genetics , SAP90-PSD95 Associated Proteins/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Survival/genetics , Cell Line, Tumor
7.
Cell Cycle ; 23(5): 588-601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38743408

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/ß-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Wnt Signaling Pathway , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Mice , Mice, Nude , Disease Progression , Female , Male , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice, Inbred BALB C , beta Catenin/metabolism
8.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Article in English | MEDLINE | ID: mdl-38774755

ABSTRACT

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Subject(s)
Anthraquinones , Apoptosis , Breast Neoplasms , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Pleurotus , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Anthraquinones/pharmacology , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Apoptosis/drug effects , Apoptosis/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pleurotus/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Oxidative Stress/drug effects
9.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Article in English | MEDLINE | ID: mdl-38774758

ABSTRACT

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Subject(s)
Liver , MAP Kinase Signaling System , Methyltransferases , Reperfusion Injury , Animals , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/pathology , Liver/metabolism , MAP Kinase Signaling System/genetics , Disease Models, Animal , Male , Apoptosis/genetics , Mice, Knockout , Humans , Adenosine/metabolism , Adenosine/analogs & derivatives , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Inbred C57BL
10.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727931

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Movement , Cell Proliferation , Hyaluronan Receptors , RNA, Small Interfering , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Humans , Apoptosis/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , RNA, Small Interfering/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Vimentin/metabolism , Vimentin/genetics
11.
Front Immunol ; 15: 1297298, 2024.
Article in English | MEDLINE | ID: mdl-38736872

ABSTRACT

Background: Carotid atherosclerosis (CAS) is a complication of atherosclerosis (AS). PAN-optosome is an inflammatory programmed cell death pathway event regulated by the PAN-optosome complex. CAS's PAN-optosome-related genes (PORGs) have yet to be studied. Hence, screening the PAN-optosome-related diagnostic genes for treating CAS was vital. Methods: We introduced transcriptome data to screen out differentially expressed genes (DEGs) in CAS. Subsequently, WGCNA analysis was utilized to mine module genes about PANoptosis score. We performed differential expression analysis (CAS samples vs. standard samples) to obtain CAS-related differentially expressed genes at the single-cell level. Venn diagram was executed to identify PAN-optosome-related differential genes (POR-DEGs) associated with CAS. Further, LASSO regression and RF algorithm were implemented to were executed to build a diagnostic model. We additionally performed immune infiltration and gene set enrichment analysis (GSEA) based on diagnostic genes. We verified the accuracy of the model genes by single-cell nuclear sequencing and RT-qPCR validation of clinical samples, as well as in vitro cellular experiments. Results: We identified 785 DEGs associated with CAS. Then, 4296 module genes about PANoptosis score were obtained. We obtained the 7365 and 1631 CAS-related DEGs at the single-cell level, respectively. 67 POR-DEGs were retained Venn diagram. Subsequently, 4 PAN-optosome-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) were identified via machine learning. Cellular function tests on four genes showed that these genes have essential roles in maintaining arterial cell viability and resisting cellular senescence. Conclusion: We obtained four PANoptosis-related diagnostic genes (CNTN4, FILIP1, PHGDH, and TFPI2) associated with CAS, laying a theoretical foundation for treating CAS.


Subject(s)
Atherosclerosis , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Atherosclerosis/genetics , Atherosclerosis/immunology , Apoptosis/genetics , Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Male , Female
12.
Int J Oncol ; 65(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38757364

ABSTRACT

MicroRNAs (miRNAs) are a group of non­coding RNAs that exert master regulatory functions in post­-transcriptional gene expression. Accumulating evidence shows that miRNAs can either promote or suppress tumorigenesis by regulating different target genes or pathways and may be involved in the occurrence of carcinoma. miR­409­3p is dysregulated in a variety of malignant cancers. It plays a fundamental role in numerous cellular biological processes, such as cell proliferation, apoptosis, migration, invasion, autophagy, angiogenesis and glycolysis. In addition, studies have shown that miR­409­3p is expected to become a non­invasive biomarker. Identifying the molecular mechanisms underlying miR­409­3p­mediated tumor progression will help investigate miR­409­3p­based targeted therapy for human cancers. The present review comprehensively summarized the recently published literature on miR­409­3p, with a focus on the regulation and function of miR­409­3p in various types of cancer, and discussed the clinical implications of miR­409­3p, providing new insight for the diagnosis and treatment of cancers.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Molecular Targeted Therapy/methods , Apoptosis/genetics , Cell Movement/genetics
13.
J Transl Med ; 22(1): 469, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760791

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains a major global health challenge, with high incidence and mortality rates. The role of long noncoding RNAs (lncRNAs) in cancer progression has received considerable attention. The present study aimed to investigate the function and mechanisms underlying the role of lncRNA RP11-197K6.1, microRNA-135a-5p (hsa-miR-135a-5p), and DLX5 in CRC development. METHODS: We analyzed RNA sequencing data from The Cancer Genome Atlas Colorectal Cancer dataset to identify the association between lncRNA RP11-197K6.1 and CRC progression. The expression levels of lncRNA RP11-197K6.1 and DLX5 in CRC samples and cell lines were determined by real-time quantitative PCR and western blotting assays. Fluorescence in situ hybridization was used to confirm the cellular localization of lncRNA RP11-197K6.1. Cell migration capabilities were assessed by Transwell and wound healing assays, and flow cytometry was performed to analyze apoptosis. The interaction between lncRNA RP11-197K6.1 and miR-135a-5p and its effect on DLX5 expression were investigated by the dual-luciferase reporter assay. Additionally, a xenograft mouse model was used to study the in vivo effects of lncRNA RP11-197K6.1 on tumor growth, and an immunohistochemical assay was performed to assess DLX5 expression in tumor tissues. RESULTS: lncRNA RP11-197K6.1 was significantly upregulated in CRC tissues and cell lines as compared to that in normal tissues, and its expression was inversely correlated with patient survival. It promoted the migration and metastasis of CRC cells by interacting with miR-135a-5p, alleviated suppression of DLX5 expression, and facilitated tumor growth. CONCLUSION: This study demonstrated the regulatory network and mechanism of action of the lncRNA RP11-197K6.1/miR-135a-5p/DLX5 axis in CRC development. These findings provided insights into the molecular pathology of CRC and suggested potential therapeutic targets for more effective treatment of patients with CRC.


Subject(s)
Cell Movement , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Male , Female , Apoptosis/genetics , Cell Proliferation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Base Sequence , Mice, Inbred BALB C , Middle Aged , Mice , RNA, Competitive Endogenous
14.
Cell Death Dis ; 15(5): 313, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702326

ABSTRACT

CD24 is overexpressed in various tumours and considered a regulator of cell migration, invasion, and proliferation. Recent studies have found that CD24 on ovarian cancer (OC) and triple-negative breast cancer cells interacts with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10) on tumour-associated macrophages (TAMs) to inhibit phagocytosis by macrophages. Because of its multiple roles in regulating the immune response and tumorigenesis, CD24 is a very promising therapeutic target. However, the regulatory mechanism of CD24 in OC remains unclear. Here, we found that the long noncoding RNA (lncRNA) IL21-AS1, which was upregulated in OC, inhibited macrophage-mediated phagocytosis and promoted OC cell proliferation and apoptosis inhibition. More importantly, after IL21-AS1 knockdown, a significant survival advantage was observed in mice engrafted with tumours. Mechanistically, we identified IL21-AS1 as a hypoxia-induced lncRNA. Moreover, IL21-AS1 increased HIF1α-induced CD24 expression under hypoxic conditions. In parallel, we found that IL21-AS1 acted as a competing endogenous RNA (ceRNA) for miR-561-5p to regulate CD24 expression. Finally, IL21-AS1 increased CD24 expression in OC and facilitated OC progression. Our findings provide a molecular basis for the regulation of CD24, thus highlighting a potential strategy for targeted treatment of OC.


Subject(s)
CD24 Antigen , Carcinogenesis , Ovarian Neoplasms , Phagocytosis , RNA, Long Noncoding , CD24 Antigen/metabolism , CD24 Antigen/genetics , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Phagocytosis/genetics , Animals , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Disease Progression , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Nude , Apoptosis/genetics , Mice, Inbred BALB C , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
15.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Interferon Regulatory Factors , Methyltransferases , Up-Regulation , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Mice , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism
16.
BMC Cancer ; 24(1): 580, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735973

ABSTRACT

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Osteosarcoma , Serine-Arginine Splicing Factors , Humans , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Up-Regulation , Alternative Splicing
17.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Apoptosis/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Integrin alpha3/metabolism , Integrin alpha3/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
18.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701556

ABSTRACT

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Subject(s)
Adenosine , Methyltransferases , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Humans , Female , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Methylation , Cell Line, Tumor , Cell Proliferation/genetics , Animals , Amino Acid Transport System A/metabolism , Amino Acid Transport System A/genetics , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Prognosis , Cell Survival/genetics
19.
J Cell Mol Med ; 28(9): e18141, 2024 May.
Article in English | MEDLINE | ID: mdl-38742851

ABSTRACT

Type 2 diabetes mellitus (T2D) and osteoporosis (OP) are systemic metabolic diseases and often coexist. The mechanism underlying this interrelationship remains unclear. We downloaded microarray data for T2D and OP from the Gene Expression Omnibus (GEO) database. Using weighted gene co-expression network analysis (WGCNA), we identified co-expression modules linked to both T2D and OP. To further investigate the functional implications of these associated genes, we evaluated enrichment using ClueGO software. Additionally, we performed a biological process analysis of the genes unique in T2D and OP. We constructed a comprehensive miRNA-mRNA network by incorporating target genes and overlapping genes from the shared pool. Through the implementation of WGCNA, we successfully identified four modules that propose a plausible model that elucidates the disease pathway based on the associated and distinct gene profiles of T2D and OP. The miRNA-mRNA network analysis revealed co-expression of PDIA6 and SLC16A1; their expression was upregulated in patients with T2D and islet ß-cell lines. Remarkably, PDIA6 and SLC16A1 were observed to inhibit the proliferation of pancreatic ß cells and promote apoptosis in vitro, while downregulation of PDIA6 and SLC16A1 expression led to enhanced insulin secretion. This is the first study to reveal the significant roles of PDIA6 and SLC16A1 in the pathogenesis of T2D and OP, thereby identifying additional genes that hold potential as indicators or targets for therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , Osteoporosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Humans , Osteoporosis/genetics , Osteoporosis/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Apoptosis/genetics , Transcriptome/genetics , Cell Proliferation/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin/metabolism
20.
Bull Exp Biol Med ; 176(5): 658-665, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727955

ABSTRACT

We studied the influence of extracellular vesicles from the follicular fluid of a young donor on gene expression (MKI67, MYBL2, CCNB1, CCND1, CCNE1, CALM2, BAX, NDRG1, TP53I3, VEGF, VCAN, HAS2, CTSL2, PIBF1, RPL37, PFKP, GPX3, and AQP3) in embryos of women of different ages. According to nanoparticle tracking analysis data, the concentration of extracellular vesicles was 3.75±0.47×1011 particles/ml and the mean particle size was 138.78±9.90 nm. During co-culturing of the follicular fluid extracellular vesicles with blastocysts of young women, we observed significantly increased expression of mRNA for genes CTSL2, CCND1, CCNE1, VEGF and reduced expression of BAX gene mRNA in comparison with embryos in women of late reproductive age. We hypothesized that addition of extracellular vesicles of the oocyte follicular fluid from a young donor to the culture medium of embryos could slow down apoptosis process typical of blastocyst cells in women above 36 years.


Subject(s)
Apoptosis , Blastocyst , Extracellular Vesicles , Follicular Fluid , Humans , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Apoptosis/genetics , Adult , Follicular Fluid/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Gene Expression Regulation, Developmental , Cell Proliferation , Oocytes/metabolism , Age Factors , Embryonic Development/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...