Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Parkinsonism Relat Disord ; 123: 106943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555792

ABSTRACT

We describe here a 73-year-old patient presenting with atypical MSA-P-like phenotype carrying a monoallelic p. W279X mutation in the APTX gene, which causes ataxia with oculomotor apraxia type 1 (AOA1) when in homozygous state. We hypothesize that rare monoallelic APTX variants could modulate MSA risk and phenotype.


Subject(s)
Multiple System Atrophy , Phenotype , Humans , Aged , Multiple System Atrophy/genetics , Male , DNA-Binding Proteins/genetics , Mutation , Heterozygote , Apraxias/genetics , Apraxias/congenital , Cogan Syndrome/genetics , Female
2.
Eur J Med Genet ; 68: 104923, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346666

ABSTRACT

Pathogenic variants in BRPF1 cause intellectual disability, ptosis and facial dysmorphism. Speech and language deficits have been identified as a manifestation of BRPF1-related disorder but have not been systematically characterized. We provide a comprehensive delineation of speech and language abilities in BRPF1-related disorder and expand the phenotype. Speech and language, and health and medical history were assessed in 15 participants (male = 10, median age = 7 years 4 months) with 14 BRPF1 variants. Language disorders were common (11/12), and most had mild to moderate deficits across receptive, expressive, written, and social-pragmatic domains. Speech disorders were frequent (7/9), including phonological delay (6/9) and disorder (3/9), and childhood apraxia of speech (3/9). All those tested for cognitive abilities had a FSIQ ≥70 (4/4). Participants had vision impairment (13/15), fine (8/15) and gross motor delay (10/15) which often resolved in later childhood, infant feeding impairment (8/15), and infant hypotonia (9/15). We have implicated BRPF1-related disorder as causative for speech and language disorder, including childhood apraxia of speech. Adaptive behavior and cognition were strengths when compared to other monogenic neurodevelopmental chromatin-related disorders. The universal involvement of speech and language impairment is noteable, relative to the high degree of phenotypic variability in BRPF1-related disorder.


Subject(s)
Apraxias , Intellectual Disability , Language Development Disorders , Child , Humans , Male , Adaptor Proteins, Signal Transducing/genetics , Apraxias/genetics , Bromodomain Containing Proteins , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Language Development Disorders/genetics , Phenotype , Speech , Speech Disorders , Female
3.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895192

ABSTRACT

CTNNB1 syndrome is an autosomal-dominant neurodevelopmental disorder featuring developmental delay; intellectual disability; behavioral disturbances; movement disorders; visual defects; and subtle facial features caused by de novo loss-of-function variants in the CTNNB1 gene. Due to paucity of data, this study intends to describe feeding issues and oral-motor dyspraxia in an unselected cohort of 10 patients with a confirmed molecular diagnosis. Pathogenic variants along with key information regarding oral-motor features were collected. Sialorrhea was quantified using the Drooling Quotient 5. Feeding abilities were screened using the Italian version of the Montreal Children's Hospital Feeding Scale (I-MCH-FS). Mild-to-severe coordination difficulties in single or in a sequence of movements involving the endo-oral and peri-oral muscles were noticed across the entire cohort. Mild-to-profuse drooling was a commonly complained-about issue by 30% of parents. The mean total I-MCH-FS t-score equivalent was 43.1 ± 7.5. These findings contribute to the understanding of the CTNNB1 syndrome highlighting the oral motor phenotype, and correlating specific gene variants with clinical characteristics.


Subject(s)
Apraxias , Intellectual Disability , Neurodevelopmental Disorders , Sialorrhea , Child , Humans , Syndrome , Intellectual Disability/genetics , Intellectual Disability/pathology , Apraxias/genetics , beta Catenin/genetics
4.
Neuropediatrics ; 54(6): 407-411, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37549685

ABSTRACT

Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.


Subject(s)
Apraxias , Speech , Male , Child , Humans , Apraxias/genetics , Speech Disorders/genetics , Mutation/genetics , Exome Sequencing , Membrane Proteins/genetics , Tumor Suppressor Proteins/genetics
5.
Eur J Hum Genet ; 31(7): 793-804, 2023 07.
Article in English | MEDLINE | ID: mdl-36599938

ABSTRACT

Speech and language impairments are central features of CDK13-related disorder. While pathogenic CDK13 variants have been associated with childhood apraxia of speech (CAS), a systematic characterisation of communication has not been conducted. Here we examined speech, language, non-verbal communication skills, social behaviour and health and development in 41 individuals with CDK13-related disorder from 10 countries (male = 22, median-age 7 years 1 month, range 1-25 years; 33 novel). Most participants used augmentative and alternative communication (AAC) in early childhood (24/41). CAS was common (14/22). Performance varied widely across intellectual ability, social behaviour and expressive language skills, with participants ranging from within average through to the severely impaired range. Receptive language was significantly stronger than expressive language ability. Social motivation was a relative strength. In terms of a broader health phenotype, a quarter had one or more of: renal, urogenital, musculoskeletal, and cardiac malformations, vision impairment, ear infections and/or sleep disturbance. All had gross and fine motor impairments (41/41). Other conditions included mild-moderate intellectual disability (16/22) and autism (7/41). No genotype-phenotype correlations were found. Recognition of CAS, a rare speech disorder, is required to ensure appropriately targeted therapy. The high prevalence of speech and language impairment underscores the importance of tailored speech therapy, particularly early access to AAC supports.


Subject(s)
Apraxias , Intellectual Disability , Language Development Disorders , Child, Preschool , Male , Humans , Speech , Speech Disorders/genetics , Apraxias/genetics , Language , Communication , Intellectual Disability/genetics , Language Development Disorders/genetics , CDC2 Protein Kinase
6.
Eur J Med Genet ; 66(2): 104692, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592689

ABSTRACT

Poretti-Boltshauser syndrome (PTBHS) is an autosomal recessive disorder characterized by cerebellar dysplasia with cysts and an abnormal shape of the fourth ventricle on neuroimaging, due to pathogenic variants in the LAMA1 gene. The clinical spectrum mainly consists of neurological and ophthalmological manifestations, including non-progressive cerebellar ataxia, oculomotor apraxia, language impairment, intellectual disability, high myopia, abnormal eye movements and retinal dystrophy. We report a patient presenting with ventriculomegaly on antenatal neuroimaging and a neonatal diagnosis of Type III esophageal atresia. She subsequently developed severe myopia and strabismus with retinal dystrophy, mild developmental delay, and cerebellar dysplasia. Genetic investigations confirmed PTBHS. This report confirms previous reports of antenatal ventriculomegaly in PTBHS patients and documents a so far unreported occurrence of esophageal atresia in PTBHS. We additionally gathered phenotype and genotype descriptions of published cases in an effort to better define the spectrum of PTBHS.


Subject(s)
Abnormalities, Multiple , Apraxias , Cerebellar Ataxia , Esophageal Atresia , Hydrocephalus , Intellectual Disability , Myopia , Retinal Dystrophies , Pregnancy , Humans , Female , Cerebellar Ataxia/genetics , Intellectual Disability/genetics , Esophageal Atresia/diagnostic imaging , Esophageal Atresia/genetics , Abnormalities, Multiple/genetics , Phenotype , Retinal Dystrophies/genetics , Hydrocephalus/diagnostic imaging , Hydrocephalus/genetics , Apraxias/genetics , Myopia/genetics
7.
J Med Genet ; 60(6): 597-607, 2023 06.
Article in English | MEDLINE | ID: mdl-36328423

ABSTRACT

BACKGROUND: Heterozygous disruptions of FOXP2 were the first identified molecular cause for severe speech disorder: childhood apraxia of speech (CAS), and yet few cases have been reported, limiting knowledge of the condition. METHODS: Here we phenotyped 28 individuals from 17 families with pathogenic FOXP2-only variants (12 loss-of-function, five missense variants; 14 males; aged 2 to 62 years). Health and development (cognitive, motor, social domains) were examined, including speech and language outcomes with the first cross-linguistic analysis of English and German. RESULTS: Speech disorders were prevalent (23/25, 92%) and CAS was most common (22/25, 88%), with similar speech presentations across English and German. Speech was still impaired in adulthood, and some speech sounds (eg, 'th', 'r', 'ch', 'j') were never acquired. Language impairments (21/25, 84%) ranged from mild to severe. Comorbidities included feeding difficulties in infancy (10/26, 38%), fine (13/26, 50%) and gross (13/26, 50%) motor impairment, anxiety (5/27, 19%), depression (6/27, 22%) and sleep disturbance (10/24, 42%). Physical features were common (22/27, 81%) but with no consistent pattern. Cognition ranged from average to mildly impaired and was incongruent with language ability; for example, seven participants with severe language disorder had average non-verbal cognition. CONCLUSIONS: Although we identify an increased prevalence of conditions like anxiety, depression and sleep disturbance, we confirm that the consequences of FOXP2 dysfunction remain relatively specific to speech disorder, as compared with other recently identified monogenic conditions associated with CAS. Thus, our findings reinforce that FOXP2 provides a valuable entry point for examining the neurobiological bases of speech disorder.


Subject(s)
Apraxias , Language Disorders , Male , Humans , Child , Speech Disorders/genetics , Language Disorders/epidemiology , Language Disorders/genetics , Speech , Apraxias/genetics , Mutation, Missense/genetics , Forkhead Transcription Factors/genetics
8.
Retin Cases Brief Rep ; 17(5): 511-514, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-35671446

ABSTRACT

PURPOSE: LAMA 1 gene as a pathologic variant leading to cerebellar dysplasia and cysts, nonprogressive ataxia, language, and motor developmental delay without any muscular involvement was recently described as Poretti-Boltshauser syndrome (PBS). Ocular involvement is a common associated feature in this neurodegenerative disorder. In this case report, we describe the retinal changes associated with Poretti-Boltshauser syndrome. METHODS, PATIENT, AND RESULTS: A 4-year-old female child presented with the progressive decreased vision for the past 6 to 8 months. Ophthalmic examination revealed mild myopia and ocular motor apraxia with retinal disruptions appearing as holes that were confined only to inner retinal layers. The child also had motor and speech developmental delays. Magnetic resonance imaging of the brain showed vermis hypoplasia with cerebellar dysgenesis and multiple cystic spaces in both cerebellar hemispheres. Whole exome sequencing revealed a homozygous pathogenic variant of exon 2-63 deletion in the LAMA 1 gene, which was confirmatory for Poretti-Boltshauser syndrome. CONCLUSION: Oculomotor apraxia and retinal changes can lead to visual disturbances in Poretti-Boltshauser syndrome. Identification of these features and prompt rehabilitative measures can improve the quality of life of these children.


Subject(s)
Abnormalities, Multiple , Apraxias , Child , Female , Humans , Child, Preschool , Quality of Life , Cerebellum/abnormalities , Cerebellum/pathology , Retina/pathology , Apraxias/diagnosis , Apraxias/genetics , Magnetic Resonance Imaging
9.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Article in English | MEDLINE | ID: mdl-36117209

ABSTRACT

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Subject(s)
Apraxias , Speech Disorders , Child , Humans , Speech Disorders/genetics , Apraxias/genetics , Chromosome Mapping , Causality , Brain , Histone-Lysine N-Methyltransferase
10.
Clin Linguist Phon ; 37(4-6): 330-344, 2023 06 03.
Article in English | MEDLINE | ID: mdl-35652603

ABSTRACT

Limited evidence for early indicators of childhood apraxia of speech (CAS) precludes reliable diagnosis before 36 months, although a few prior studies have identified several potential early indicators. We examined these possible early indicators in 10 toddlers aged 14-24 months at risk for CAS due to a genetic condition: 7q11.23 duplication syndrome (Dup7). Phon Vocalisation analyses were conducted on phonetic transcriptions of each child's vocalisations during an audio-video recorded 30-minute play session with a caregiver and/or a trained research assistant. The resulting data were compared to data previously collected by Overby from similar-aged toddlers developing typically (TD), later diagnosed with CAS (LCAS), or later diagnosed with another speech sound disorder (LSSD). The Dup7 group did not differ significantly from the LCAS group on any measure. In contrast, the Dup7 group evidenced significant delays relative to the LSSD group on canonical babble frequency, volubility, consonant place diversity, and consonant manner diversity and relative to the TD group not only on these measures but also on canonical babble ratio, consonant diversity, and vocalisation structure diversity. Toddlers with Dup7 also demonstrated expressive vocabulary delay as measured by both number of word types orally produced during the play sessions and primary caregivers' responses on a standardised parent-report measure of early expressive vocabulary. Examining babble, phonetic, and phonotactic characteristics from the productions of young children may allow for earlier identification of CAS and a better understanding of the nature of CAS.


Subject(s)
Apraxias , Speech , Humans , Child, Preschool , Speech/physiology , Apraxias/diagnosis , Apraxias/genetics , Speech Disorders , Phonetics , Speech Production Measurement
11.
Am J Med Genet A ; 188(12): 3389-3400, 2022 12.
Article in English | MEDLINE | ID: mdl-35892268

ABSTRACT

Pathogenic KAT6A variants cause syndromic neurodevelopmental disability. "Speech delay" is reported, yet none have examined specific speech and language features of KAT6A syndrome. Here we phenotype the communication profile of individuals with pathogenic KAT6A variants. Medical and communication data were acquired via standardized surveys and telehealth-assessment. Forty-nine individuals (25 females; aged 1;5-31;10) were recruited, most with truncating variants (44/49). Intellectual disability/developmental delay (42/45) was common, mostly moderate/severe, alongside concerns about vision (37/48), gastrointestinal function (33/48), and sleep (31/48). One-third (10/31) had a diagnosis of autism. Seventy-three percent (36/49) were minimally-verbal, relying on nonverbal behaviors to communicate. Verbal participants (13/49) displayed complex and co-occurring speech diagnoses regarding the perception/production of speech sounds, including phonological impairment (i.e., linguistic deficits) and speech apraxia (i.e., motor planning/programming deficits), which significantly impacted intelligibility. Receptive/expressive language and adaptive functioning were also severely impaired. Truncating variants in the last two exons of KAT6A were associated with poorer communication, daily-living skills, and socialization outcomes. In conclusion, severe communication difficulties are present in KAT6A syndrome, typically on a background of significant intellectual disability, vision, feeding and motor deficits, and autism in some. Most are minimally-verbal, with apparent contributions from underlying motor deficits and cognitive-linguistic impairment. Alternative/augmentative communication (AAC) approaches are required for many into adult life. Tailored AAC options should be fostered early, to accommodate the best communication outcomes.


Subject(s)
Apraxias , Intellectual Disability , Female , Humans , Apraxias/genetics , Genetic Association Studies , Histone Acetyltransferases , Intellectual Disability/genetics , Language Development , Speech , Male , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult
12.
Am J Med Genet A ; 188(12): 3401-3415, 2022 12.
Article in English | MEDLINE | ID: mdl-35856171

ABSTRACT

BCL11A is implicated in BCL11A-Related Intellectual Development Disorder (BCL11A-IDD). Previously reported cases had various types of BCL11A variants (copy-number variations [CNVs], singlenucleotide variants [SNVs]). Phenotypes included global, cognitive, and motor delays, autism spectrum disorder (ASD), craniofacial dysmorphology, and speech and language delays described generally, with only two reports specifying childhood apraxia of speech (CAS). Here, we present three additional children with CAS and de novo BCL11A variants, a p.Ala182Thr nonconservative missense and a p.GLu611.Ter nonsense variant, both in exon 4, and a 106 kb deletion harboring exons 1 and 2. All three children have fine and gross motor discoordination, feeding difficulties, and visual motor disorders. Intellectual and learning disabilities and disordered language skills were seen only in the child with the missense variant and the child with the deletion. These findings align with, and expand, previous findings in that BCL11A variants have significant and highly penetrant apraxic effects across motor systems, consistent with cerebellar involvement. The deletion of exons 1 and 2 is the smallest BCL11A CNV with the full phenotypic expression reported to date. The present results support previous findings in that BCL11A-IDD can result from BCL11A variants regardless of type (deletion, SNVs). A gene expression study shows that BCL11 is expressed highly in the early developing cerebellum and primary motor and auditory cortices. Significant co-expression rates in these regions with genes previously implicated in disorders of spoken language and in ASD support the phenotypic overlaps in children with BCL11A-IDD, CAS, and ASD.


Subject(s)
Apraxias , Autism Spectrum Disorder , Intellectual Disability , Language Development Disorders , Humans , Apraxias/genetics , Autism Spectrum Disorder/genetics , Cerebellum , Gene Regulatory Networks , Intellectual Disability/genetics , Language Development Disorders/genetics , Phenotype , Repressor Proteins/genetics , Speech , Transcription Factors/genetics
13.
J Mol Neurosci ; 72(8): 1715-1723, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35676594

ABSTRACT

AOA2 is a rare progressive adolescent-onset disease characterised by cerebellar vermis atrophy, peripheral neuropathy and elevated serum alpha-fetoprotein (AFP) caused by pathogenic bi-allelic variants in SETX, encoding senataxin, involved in DNA repair and RNA maturation. Sanger sequencing of genomic DNA, co-segregation and oxidative stress functional studies were performed in Family 1. Trio whole-exome sequencing (WES), followed by SETX RNA and qRT-PCR analysis, were performed in Family 2. Sanger sequencing in Family 1 revealed two novel in-frame SETX deletion and duplication variants in trans (c.7009_7011del; p.Val2337del and c.7369_7371dup; p.His2457dup). Patients had increased induced chromosomal aberrations at baseline and following exposure to higher mitomycin-C concentration and increased sensitivity to oxidative stress at the lower mitomycin-C concentration in cell viability test. Trio WES in Family 2 revealed two novel SETX variants in trans, a nonsense variant (c.568C > T; p.Gln190*), and a deep intronic variant (c.5549-107A > G). Intronic variant analysis and SETX mRNA expression revealed activation of a cryptic exon introducing a premature stop codon (p.Met1850Lysfs*18) and resulting in aberrant splicing, as shown by qRT-PCR analysis, thus leading to higher levels of cryptic exon activation. Along with a second deleterious allele, this variant leads to low levels of SETX mRNA and disease manifestations. Our report expands the phenotypic spectrum of AOA2. Results provide initial support for the hypomorphic nature of the novel in-frame deletion and duplication variants in Family 1. Deep-intronic variant analysis of Family 2 variants potentially reveals a previously undescribed poison exon in the SETX gene, which may contribute to tailored therapy development.


Subject(s)
Apraxias , Poisons , Adolescent , Apraxias/genetics , Apraxias/pathology , Codon, Nonsense , DNA Helicases/genetics , Exons , Humans , Israel , Mitomycin , Multifunctional Enzymes/genetics , Mutation , RNA Helicases/genetics , Spinocerebellar Ataxias/congenital
14.
J Neurodev Disord ; 14(1): 36, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690736

ABSTRACT

BACKGROUND: Speech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language. Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in the FOXP2 gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and with FOXP2 expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders. CONCLUSIONS: Though speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.


Subject(s)
Apraxias , Language Development Disorders , Apraxias/genetics , Child , Humans , Language , Language Development Disorders/complications , Language Development Disorders/genetics , Speech , Speech Disorders/genetics , Speech Disorders/psychology
15.
Mov Disord ; 37(6): 1309-1316, 2022 06.
Article in English | MEDLINE | ID: mdl-35426160

ABSTRACT

BACKGROUND: Ataxia with oculomotor apraxia (AOA) is characterized by early-onset cerebellar ataxia associated with oculomotor apraxia. AOA1, AOA2, AOA3, and AOA4 subtypes may present pathogenic variants in APTX, SETX, PIK3R5, and PNKP genes, respectively. Mutations in XRCC1 have been found to cause autosomal recessive spinocerebellar ataxia-26 (SCAR26) now considered AOA5. OBJECTIVES: To examine a cohort of Brazilians with autosomal recessive cerebellar ataxia plus oculomotor apraxia and determine the frequencies of AOA subtypes through genetic investigation. METHODS: We evaluated clinical, biomarkers, electrophysiological, and radiological findings of 52 patients with AOA phenotype and performed a genetic panel including APTX, SETX, PIK3R5, PNKP, and XRCC1. RESULTS: We found pathogenic variants in SETX (15 patients), PNKP (12), and APTX (5). No mutations in PIK3R5 or XRCC1 were identified. CONCLUSIONS: AOA2 and AOA4 were the most common forms of AOA in Brazil. Mutations in PIK3R5 and XRCC1 were not part of this genetic spectrum. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Apraxias , Cerebellar Ataxia , Apraxias/congenital , Apraxias/genetics , Ataxia/genetics , Brazil , Cerebellar Ataxia/complications , Cerebellar Ataxia/genetics , Cogan Syndrome , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Humans , Multifunctional Enzymes/genetics , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA Helicases/genetics , X-ray Repair Cross Complementing Protein 1/genetics
16.
Eur J Hum Genet ; 30(7): 800-811, 2022 07.
Article in English | MEDLINE | ID: mdl-35437318

ABSTRACT

Speech and language impairments are commonly reported in DYRK1A syndrome. Yet, speech and language abilities have not been systematically examined in a prospective cohort study. Speech, language, social behaviour, feeding, and non-verbal communication skills were assessed using standardised tools. The broader health and medical phenotype was documented using caregiver questionnaires, interviews and confirmation with medical records. 38 individuals with DYRK1A syndrome (23 male, median age 8 years 3 months, range 1 year 7 months to 25 years) were recruited. Moderate to severe intellectual disability (ID), autism spectrum disorder (ASD), vision, motor and feeding impairments were common, alongside epilepsy in a third of cases. Speech and language was disordered in all participants. Many acquired some degree of verbal communication, yet few (8/38) developed sufficient oral language skills to rely solely on verbal communication. Speech was characterised by severe apraxia and dysarthria in verbal participants, resulting in markedly poor intelligibility. Those with limited verbal language (30/38) used a combination of sign and graphic augmentative and alternative communication (AAC) systems. Language skills were low across expressive, receptive, and written domains. Most had impaired social behaviours (25/29). Restricted and repetitive interests were most impaired, whilst social motivation was a relative strength. Few individuals with DYRK1A syndrome use verbal speech as their sole means of communication, and hence, all individuals need early access to tailored, graphic AAC systems to support their communication. For those who develop verbal speech, targeted therapy for apraxia and dysarthria should be considered to improve intelligibility and, consequently, communication autonomy.


Subject(s)
Apraxias , Autism Spectrum Disorder , Language Development Disorders , Apraxias/genetics , Dysarthria , Humans , Language Development Disorders/genetics , Male , Motivation , Prospective Studies , Speech , Syndrome
17.
Mol Neurobiol ; 59(6): 3845-3858, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35420381

ABSTRACT

Hereditary ataxias are a group of devastating neurological disorders that affect coordination of gait and are often associated with poor coordination of hands, speech, and eye movements. Ataxia with ocular apraxia type 1 (AOA1) (OMIM: 606,350.0006) is characterized by slowly progressive symptoms of childhood-onset and pathogenic mutations in APTX; the only known cause underpinning AOA1. APTX encodes the protein aprataxin, composed of three domains sharing homology with proteins involved in DNA damage, signaling, and repair. We present four siblings from an endogamic family in a rural, isolated town of Colombia with ataxia and ocular apraxia of childhood-onset and confirmed molecular diagnosis of AOA1, homozygous for the W279* p.Trp279Ter mutation. We predicted the mutated APTX with AlphaFold to demonstrate the effects of this stop-gain mutation that deletes three beta helices encoded by amino acid 270 to 339 rescinding the C2H2-type zinc fingers (Znf) (C2H2 Znf) DNA-binding, the DNA-repair domain, and the whole 3D structure of APTX. All siblings exhibited different ages of onset (4, 6, 8, and 11 years old) and heterogeneous patterns of dysarthria (ranging from absence to mild-moderate dysarthria). Neuropsychological evaluation showed no neurocognitive impairment in three siblings, but one sibling showed temporospatial disorientation, semantic and phonologic fluency impairment, episodic memory affection, constructional apraxia, moderate anomia, low executive function, and symptoms of depression. To our knowledge, this report represents the most extensive series of siblings affected with AOA1 in Latin America, and the genetic analysis completed adds important knowledge to outline this family's disease and general complex phenotype of hereditary ataxias.


Subject(s)
Apraxias , Cerebellar Ataxia , Spinocerebellar Degenerations , Apraxias/complications , Apraxias/genetics , Ataxia/complications , Ataxia/genetics , Colombia , DNA , DNA-Binding Proteins/genetics , Dysarthria/complications , Humans , Mutation/genetics , Nuclear Proteins/genetics , Phenotype , Siblings , Spinocerebellar Degenerations/complications
18.
J AAPOS ; 26(2): 91-93, 2022 04.
Article in English | MEDLINE | ID: mdl-35121145

ABSTRACT

Wieacker-Wolff syndrome is an X-linked condition caused by variants of the ZC4H2 gene that results in in utero muscular weakness that manifests clinically as arthrogryposis congenita as well as facial and bulbar weakness. We report the case of a young girl with a de novo pathogenic deletion in the ZC4H2 gene and clinical features consistent with Wieacker-Wolff syndrome. Common eye manifestations of the syndrome reported in the literature include ptosis, strabismus, and oculomotor apraxia. The overall incidence of these manifestations is 56%.


Subject(s)
Apraxias , Genetic Diseases, X-Linked , Apraxias/genetics , Contracture , Female , Genetic Diseases, X-Linked/genetics , Humans , Intracellular Signaling Peptides and Proteins , Muscular Atrophy , Nuclear Proteins/genetics , Ophthalmoplegia
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042798

ABSTRACT

Mutations in the SETX gene, which encodes Senataxin, are associated with the progressive neurodegenerative diseases ataxia with oculomotor apraxia 2 (AOA2) and amyotrophic lateral sclerosis 4 (ALS4). To identify the causal defect in AOA2, patient-derived cells and SETX knockouts (human and mouse) were analyzed using integrated genomic and transcriptomic approaches. A genome-wide increase in chromosome instability (gains and losses) within genes and at chromosome fragile sites was observed, resulting in changes to gene-expression profiles. Transcription stress near promoters correlated with high GCskew and the accumulation of R-loops at promoter-proximal regions, which localized with chromosomal regions where gains and losses were observed. In the absence of Senataxin, the Cockayne syndrome protein CSB was required for the recruitment of the transcription-coupled repair endonucleases (XPG and XPF) and RAD52 recombination protein to target and resolve transcription bubbles containing R-loops, leading to genomic instability. These results show that transcription stress is an important contributor to SETX mutation-associated chromosome fragility and AOA2.


Subject(s)
Chromosomal Instability/genetics , DNA Helicases/metabolism , Multifunctional Enzymes/metabolism , RNA Helicases/metabolism , Spinocerebellar Ataxias/congenital , Animals , Apraxias/genetics , Ataxia/genetics , Cell Line , Cerebellar Ataxia/genetics , DNA Helicases/genetics , DNA Repair/genetics , Gene Expression Profiling/methods , Genomic Instability/genetics , Genomics/methods , Humans , Mice , Mouse Embryonic Stem Cells , Multifunctional Enzymes/genetics , Mutation/genetics , Neurodegenerative Diseases/genetics , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA Helicases/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Transcriptome/genetics
20.
BMJ Case Rep ; 14(6)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193451

ABSTRACT

Ataxia with oculomotor apraxia type 2 (AOA2), recently renamed as ATX-SETX, is an autosomal recessive, progressive neurodegenerative disorder belonging to inherited cerebellar ataxias. The pathogenic variants of the SETX gene have been implicated in ATX-SETX. We report the case of a 21-year-old woman presenting with ataxia, oculomotor apraxia and dystonia. She had elevated serum α-fetoprotein (AFP), follicle stimulating hormone (FSH) and luteinising hormone (LH) levels and moderate cerebellar atrophy. On further evaluation, she was found to have premature ovarian failure as well. Multiplex ligation-dependent probe amplification detected a heterozygous deletion in exon 6 of the SETX gene. A combination of cerebellar ataxia, oculomotor apraxia with elevated AFP and cerebellar atrophy are highly suggestive of ATX-SETX. In rare instances, it may be associated with premature ovarian failure with elevated FSH and LH levels, necessitating hormonal survey and fertility evaluation in all patients with ATX-SETX.


Subject(s)
Apraxias , Cerebellar Ataxia , Adult , Apraxias/genetics , Ataxia , Cerebellar Ataxia/genetics , DNA Helicases , Exons/genetics , Female , Humans , Multifunctional Enzymes , RNA Helicases/genetics , Spinocerebellar Ataxias/congenital , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...