Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Hepatology ; 58(6): 2163-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23813862

ABSTRACT

UNLABELLED: Hepatic innate immune cells, in particular, interstitial dendritic cells (DCs), regulate inflammatory responses and may promote inherent liver tolerogenicity. After tissue injury, adenosine triphosphate (ATP) is released and acts as a damage-associated molecular pattern that activates innate immune cells by pattern recognition receptors. CD39 (ectonucleoside triphosphate diphosphohydrolase-1) rapidly hydrolyzes extracellular ATP to maintain physiological levels. We hypothesized that CD39 expression on liver DCs might contribute to regulation of their innate immune functions. Mouse liver conventional myeloid DCs (mDCs) were hyporesponsive to ATP, compared with their splenic counterparts. This disparity was ascribed to more efficient hydrolysis of ATP by higher expression of CD39 on liver mDCs. Human liver mDCs expressed greater levels of CD39 than those from peripheral blood. The comparatively high expression of CD39 on liver mDCs correlated strongly with both ATP hydrolysis and adenosine production. Notably, CD39(-/-) mouse liver mDCs exhibited a more mature phenotype, greater responsiveness to Toll-like receptor 4 ligation, and stronger proinflammatory and immunostimulatory activity than wild-type (WT) liver mDCs. To investigate the role of CD39 on liver mDCs in vivo, we performed orthotopic liver transplantation with extended cold preservation using CD39(-/-) or WT donor mouse livers. Compared to WT liver grafts, CD39(-/-) grafts exhibited enhanced interstitial DC activation, elevated proinflammatory cytokine levels, and more-severe tissue injury. Moreover, portal venous delivery of WT, but not CD39(-/-) liver mDCs, to donor livers immediately post-transplant exerted a protective effect against graft injury in CD39(-/-) to CD39(-/-) liver transplantation. CONCLUSIONS: These data reveal that CD39 expression on conventional liver mDCs limits their proinflammatory activity and confers protective properties on these important innate immune cells against liver transplant ischemia/reperfusion injury.


Subject(s)
Antigens, CD/biosynthesis , Apyrase/biosynthesis , Dendritic Cells/metabolism , Liver Transplantation , Liver/immunology , Reperfusion Injury/prevention & control , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Humans , Immunity, Innate , Liver/drug effects , Male , Mice , Reperfusion Injury/metabolism , Transplantation Immunology
2.
Purinergic Signal ; 8(2): 235-43, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22038661

ABSTRACT

Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.


Subject(s)
Adenosine Triphosphatases/biosynthesis , Brain Neoplasms/enzymology , Gene Expression Regulation, Enzymologic/physiology , Glioma/enzymology , Inflammation Mediators/physiology , Lung Injury/enzymology , Adenosine Triphosphatases/genetics , Animals , Apyrase/biosynthesis , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/pathology , Inflammation/enzymology , Inflammation/pathology , Lung Injury/pathology , Male , Rats , Rats, Wistar
3.
Stem Cell Res ; 7(1): 66-74, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546330

ABSTRACT

Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases.


Subject(s)
Adenosine/biosynthesis , Antigens, CD/biosynthesis , Apyrase/biosynthesis , Mesenchymal Stem Cells/immunology , Stromal Cells/immunology , T-Lymphocytes/immunology , Adenosine/immunology , Adenosine Deaminase/immunology , Antigens, CD/immunology , Apyrase/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Growth Processes/immunology , Humans , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , Receptor, Adenosine A2A/immunology , Signal Transduction/immunology , Stromal Cells/cytology , T-Lymphocytes, Regulatory/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL