Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 205: 115287, 2022 11.
Article in English | MEDLINE | ID: mdl-36209839

ABSTRACT

The increased resistance of human malaria parasite Plasmodium falciparum (Pf) to currently used drugs necessities the development of novel anti-malarials. Here, we examine the potential of erythritol, a sugar substitute for therapeutic intervention. Erythritol is a permeant of Plasmodium falciparum aquaglyceroporin (PfAQP) which is a multifunctional channel responsible for maintaining hydro-homeostasis. We show that erythritol effectively inhibited growth and progression of asexual blood stage malaria parasite, and effect invasion and egress processes. It also inhibited the liver stage (sporozoites) and transmission stage parasite (gametocytes) development. Interestingly, erythritol inhibited in vivo growth of malaria parasite in mouse experimental model. It was more effective in inhibiting parasite growth both in vivo and in vitro when tested together with a known anti-malarial 'artesunate'. Additionally, erythritol showed cytokine-modulating effect which suggests its direct effect on the host immune system. Ammonia detection assay demonstrated that erythritol uptake effects the amount of ammonia release across the parasite. Our functional complementation assays suggest that PfAQP expression in yeast mutant restores its growth in hyperosmotic conditions but showed reduced growth in the presence of erythritol. Osmotic lysis assay suggests that erythritol creates osmotic stress for killing the parasite. Overall, our data bestow erythritol as a promising lead compound with an attractive antimalarial profile and could possibly be combined with known drugs without losing its efficacy. We propose the use of erythritol based sweet candies for protection against malaria specially in children living in the endemic area.


Subject(s)
Antimalarials , Aquaglyceroporins , Child , Mice , Humans , Animals , Antimalarials/pharmacology , Plasmodium falciparum , Aquaglyceroporins/pharmacology , Erythritol/pharmacology , Sweetening Agents , Ammonia/pharmacology , Cytokines/pharmacology
2.
Article in English | MEDLINE | ID: mdl-35988877

ABSTRACT

The effect of acute hypoosmotic stress on the neural response was investigated using the neurons identified in the abdominal ganglion of the amphibious mollusk Onchidium. The membrane potential of an identified neuron (Ip-1/2) was not significantly altered in 50% hypoosmotic artificial sea water. In isotonic 50% artificial seawater (ASW) with osmolarity that was compensated for using glycerol or urea, the membrane potentials of Ip-1/2 were also not altered compared to those in 50% hypoosmotic ASW. However, hyperpolarization was induced in isotonic 50% ASW when osmolarity was compensated for using sucrose or mannose. In the presence of volume-regulated anion channel (VRAC) inhibitors (niflumic acid and glibenclamide), the Ip-1/2 membrane potentials were hyperpolarized in 50% hypoosmotic ASW. These results suggest that there is a compensatory mechanism involving aquaglyceroporin and VRAC-like channels that maintains membrane potential under hypoosmotic conditions. Here, we detected the expression of aquaglyceroporin mRNA in neural tissues of Onchidium.


Subject(s)
Aquaglyceroporins , Gastropoda , Animals , Anions/metabolism , Anions/pharmacology , Aquaglyceroporins/metabolism , Aquaglyceroporins/pharmacology , Gastropoda/metabolism , Glyburide/metabolism , Glyburide/pharmacology , Glycerol/metabolism , Mannose/metabolism , Mannose/pharmacology , Membrane Potentials/physiology , Neurons/metabolism , Niflumic Acid/metabolism , Niflumic Acid/pharmacology , RNA, Messenger/metabolism , Sucrose/metabolism
3.
Environ Health Perspect ; 114(4): 527-31, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16581540

ABSTRACT

Many mammals methylate trivalent inorganic arsenic in liver to species that are released into the bloodstream and excreted in urine and feces. This study addresses how methylated arsenicals pass through cell membranes. We have previously shown that aquaglyceroporin channels, including Escherichia coli GlpF, Saccharomyces cerevisiae Fps1p, AQP7, and AQP9 from rat and human, conduct trivalent inorganic arsenic [As(III)] as arsenic trioxide, the protonated form of arsenite. One of the initial products of As(III) methylation is methylarsonous acid [MAs(III)], which is considerably more toxic than inorganic As(III). In this study, we investigated the ability of GlpF, Fps1p, and AQP9 to facilitate movement of MAs(III) and found that rat aquaglyceroporin conducted MAs(III) at a higher rate than the yeast homologue. In addition, rat AQP9 facilitates MAs(III) at a higher rate than As(III). These results demonstrate that aquaglyceroporins differ both in selectivity for and in transport rates of trivalent arsenicals. In this study, the requirement of AQP9 residues Phe-64 and Arg-219 for MAs(III) movement was examined. A hydrophobic residue at position 64 is not required for MAs(III) transport, whereas an arginine at residue 219 may be required. This is similar to that found for As(III), suggesting that As(III) and MAs(III) use the same translocation pathway in AQP9. Identification of MAs(III) as an AQP9 substrate is an important step in understanding physiologic responses to arsenic in mammals, including humans.


Subject(s)
Aquaglyceroporins/pharmacology , Arsenicals/pharmacokinetics , Animals , Base Sequence , DNA Primers , Escherichia coli/metabolism , Rats , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...