Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.007
Filter
1.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824148

ABSTRACT

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
2.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814867

ABSTRACT

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Subject(s)
Arabidopsis , Epitopes , Solanum lycopersicum , Epitopes/immunology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Arabidopsis/immunology , Arabidopsis/genetics , Genome, Bacterial , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity/genetics , Plant Immunity/immunology , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Bacteria/immunology , Bacteria/genetics , Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/immunology , Cold Shock Proteins and Peptides/metabolism
3.
Proc Natl Acad Sci U S A ; 121(23): e2318481121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814869

ABSTRACT

Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.


Subject(s)
Arabidopsis , Models, Biological , Morphogenesis , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flowers/growth & development , Flowers/genetics
4.
PeerJ ; 12: e17285, 2024.
Article in English | MEDLINE | ID: mdl-38708359

ABSTRACT

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Subject(s)
Musa , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Gene Expression Regulation, Plant , Musa/genetics , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
5.
Nat Commun ; 15(1): 4612, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816386

ABSTRACT

In plants, small-interfering RNAs (siRNAs) mediate epigenetic silencing via the RNA-directed DNA methylation (RdDM) pathway, which is particularly prominent during reproduction and seed development. However, there is limited understanding of the origins and dynamics of reproductive siRNAs acting in different cellular and developmental contexts. Here, we used the RNaseIII-like protein RTL1 to suppress siRNA biogenesis in Arabidopsis pollen, and found distinct siRNA subsets produced during pollen development. We demonstrate that RTL1 expression in the late microspore and vegetative cell strongly impairs epigenetic silencing, and resembles RdDM mutants in their ability to bypass interploidy hybridization barriers in the seed. However, germline-specific RTL1 expression did not impact transgenerational inheritance of triploid seed lethality. These results reveal the existence of multiple siRNA subsets accumulated in mature pollen, and suggest that mobile siRNAs involved in the triploid block are produced in germline precursor cells after meiosis, or in the vegetative cell during pollen mitosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen , RNA, Small Interfering , Seeds , Pollen/genetics , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Triploidy , DNA Methylation , Meiosis/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , Epigenesis, Genetic
6.
Nat Commun ; 15(1): 4615, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816460

ABSTRACT

Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.


Subject(s)
Arabidopsis , DNA Transposable Elements , Gene Expression Regulation, Plant , Genotype , Phenotype , Arabidopsis/genetics , DNA Transposable Elements/genetics , Genetic Variation , Genome, Plant , Environment , Gene-Environment Interaction
7.
Planta ; 260(1): 5, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777878

ABSTRACT

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Subject(s)
Brassinosteroids , Homeostasis , Plant Roots , Reactive Oxygen Species , Salt Tolerance , Steroids, Heterocyclic , Triticum , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Triticum/growth & development , Triticum/drug effects , Brassinosteroids/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Steroids, Heterocyclic/pharmacology , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Salt Stress , Oxidative Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Catalase/metabolism
8.
Physiol Plant ; 176(3): e14351, 2024.
Article in English | MEDLINE | ID: mdl-38779764

ABSTRACT

Fluorescent labelling of proteins enables the determination of their spatiotemporal localization but, sometimes, it can perturb their activity, native localization, and functionality. Spot-tag is a12-amino acid peptide recognized by a single-domain nanobody and could potentially resolve the issues associated with large fluorescence tags due to its small size. Here, using as an example the microtubule motor CENTROMERIC PROTEIN E-RELATED KINESIN 7.3 (KIN7.3), we introduce the spot-tag for protein labelling in fixed and living plant cells. Spot-tagging and detection by an anti-spot nanobody of ectopically expressed KIN7.3 did not interfere with its native localization. Most importantly, our spot-tagging pipeline facilitated the localization of KIN7.3 much more rapidly and likely accurately than labelling with large fluorescent proteins or even immunolocalization approaches. We should, though, note some limitations we have not resolved yet. Spot-tagging is functional only in fixed cells; it is available only as two fluorophores and may create a noisy background during imaging. However, we foresee that, besides the limitations of this method, spot-tagging will apply to many proteins, offsetting activity perturbations and low photon quantum yields of other protein-tagging approaches.


Subject(s)
Plant Cells , Plant Cells/metabolism , Kinesins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Article in English | MEDLINE | ID: mdl-38767756

ABSTRACT

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Potyvirus/pathogenicity , Potyvirus/physiology , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication , Nicotiana/virology , Nicotiana/genetics
10.
Commun Biol ; 7(1): 561, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734744

ABSTRACT

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Protein Binding , Models, Molecular , Amino Acid Sequence , Protein Domains
11.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768356

ABSTRACT

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Demethylation , DNA Methylation , Epigenesis, Genetic , Mutation , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Nuclear Proteins
12.
C R Biol ; 347: 35-44, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771313

ABSTRACT

In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities' systems.


Dans la nature, les plantes se défendent contre les attaques pathogènes en activant tout un arsenal de mécanismes de défense. Au cours des décennies passées, la recherche s'est principalement focalisée sur la compréhension de la résistance qualitative médiée par quelques gènes majeurs conférant une résistance quasi complète, alors que la résistance quantitative (QDR) demeure peu comprise bien qu'elle représente la forme de résistance prédominante et la plus durable dans les populations naturelles ou les cultures. Nous donnons ici une revue de nos travaux passés et présents sur la dissection des mécanismes complexes qui sous-tendent la QDR chez Arabidopsis thaliana. Les stratégies, étapes clés et défis de nos études concernant un gène QDR atypique, RKS1 (Resistance related KinaSe 1), sont rapportés. En premier lieu, à partir d'analyses génétiques par cartographie de QTL et GWA, l'identification, le clonage et l'analyse fonctionnelle de ce gène ont été utilisés comme point de départ à l'exploration des voies multiples et coordonnées agissant ensemble pour le développement de la réponse QDR dépendante de RKS1. L'identification des interacteurs et complexes protéiques impliquant RKS1 a été une première étape, la biologie des systèmes et la reconstruction de réseaux d'interactions protéines-protéines ont ensuite été mises en œuvre pour décoder les voies moléculaires conduisant aux réponses immunitaires contrôlées par RKS1. Finalement, l'exploration de l'impact potentiel de composantes clés du réseau de gènes dépendant de RKS1 sur le microbiote, offre des perspectives intéressantes et ambitieuses pour comprendre comment le système immunitaire de la plante interagit avec le système des communautés microbiennes.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Systems Biology , Disease Resistance/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Plant Immunity/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plants/genetics , Plants/immunology , Genome-Wide Association Study , Arabidopsis Proteins/genetics
13.
Planta ; 259(6): 142, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702456

ABSTRACT

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Hydrogen Sulfide , Phospholipase D , Plant Stomata , Arabidopsis/genetics , Arabidopsis/physiology , Plant Stomata/physiology , Plant Stomata/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Proline/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Lipid Peroxidation
14.
New Phytol ; 242(6): 2570-2585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708492

ABSTRACT

In plant species, anthocyanin accumulation is specifically regulated by light signaling. Although the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) complex is known to control anthocyanin biosynthesis in response to light, the precise mechanism underlying this process remains largely unknown. Here, we report that Increase in BONSAI Methylation 1 (IBM1), a JmjC domain-containing histone demethylase, participates in the regulation of light-induced anthocyanin biosynthesis in Arabidopsis. The expression of IBM1 was induced by high light (HL) stress, and loss-of-function mutations in IBM1 led to accelerated anthocyanin accumulation under HL conditions. We further identified that IBM1 is directly associated with SPA1/3/4 chromatin in vivo to establish a hypomethylation status on H3K9 and DNA non-CG at these loci under HL, thereby releasing their expression. Genetic analysis showed that quadruple mutants of IBM1 and SPA1/3/4 resemble spa134 mutants. Overexpression of SPA1 in ibm1 mutants complements the mutant phenotype. Our results elucidate the significance and mechanism of IBM1 histone demethylase in the epigenetic regulation of anthocyanin biosynthesis in Arabidopsis under HL conditions.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Arabidopsis , Epigenesis, Genetic , Gene Expression Regulation, Plant , Jumonji Domain-Containing Histone Demethylases , Light , Mutation , Arabidopsis/genetics , Arabidopsis/radiation effects , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Mutation/genetics , Chromatin/metabolism , DNA Methylation/genetics , Histones/metabolism , Phenotype
16.
Planta ; 260(1): 1, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753175

ABSTRACT

MAIN CONCLUSION: Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.


Subject(s)
Broussonetia , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Selenium , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Broussonetia/genetics , Broussonetia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Selenium/metabolism , Genome, Plant , Genome-Wide Association Study , Arabidopsis/genetics , Arabidopsis/metabolism , Stress, Physiological/genetics
17.
PLoS Biol ; 22(5): e3002592, 2024 May.
Article in English | MEDLINE | ID: mdl-38691548

ABSTRACT

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Subject(s)
Arabidopsis , Carbon Dioxide , Models, Biological , Plant Stomata , Signal Transduction , Plant Stomata/drug effects , Plant Stomata/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Computer Simulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
18.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743266

ABSTRACT

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Subject(s)
Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
19.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741087

ABSTRACT

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
20.
Environ Int ; 187: 108732, 2024 May.
Article in English | MEDLINE | ID: mdl-38728817

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Subject(s)
Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...