Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.363
Filter
1.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829344

ABSTRACT

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Subject(s)
Calcium , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/microbiology , Gossypium/genetics , Gossypium/metabolism , Gossypium/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant , Calmodulin/metabolism , Calmodulin/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Ascomycota/physiology , Ascomycota/pathogenicity , Plants, Genetically Modified , Verticillium/physiology , Verticillium/pathogenicity
2.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780624

ABSTRACT

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glucosyltransferases , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
3.
Planta ; 259(6): 153, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744752

ABSTRACT

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Subject(s)
Ascomycota , Nicotiana , Plant Diseases , RNA Interference , Ascomycota/physiology , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/genetics , Nicotiana/microbiology , Mustard Plant/genetics , Mustard Plant/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Double-Stranded/genetics
4.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Article in English | MEDLINE | ID: mdl-38695733

ABSTRACT

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Subject(s)
Arabidopsis , Ascomycota , Fungal Proteins , Plant Diseases , Plant Immunity , Ascomycota/pathogenicity , Plant Diseases/microbiology , Virulence , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Peroxidases/metabolism , Peroxidases/genetics
5.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705079

ABSTRACT

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Subject(s)
Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
6.
Environ Int ; 187: 108732, 2024 May.
Article in English | MEDLINE | ID: mdl-38728817

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Subject(s)
Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
7.
Commun Biol ; 7(1): 644, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802699

ABSTRACT

The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.


Subject(s)
Bacterial Proteins , Bradyrhizobium , Ubiquitin , Bradyrhizobium/metabolism , Bradyrhizobium/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Ubiquitin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/microbiology , Arabidopsis/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Crystallography, X-Ray , Protein Processing, Post-Translational , Ubiquitins/metabolism , Ubiquitins/genetics , Protein Binding
8.
Nat Commun ; 15(1): 4438, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806462

ABSTRACT

Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.


Subject(s)
Osmotic Pressure , Plant Diseases , Plant Roots , Pseudomonas , Plant Diseases/microbiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Soil Microbiology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects
9.
Cell Rep ; 43(5): 114179, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691455

ABSTRACT

Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.


Subject(s)
Arabidopsis , Cell Wall , Plant Diseases , Plant Roots , Ralstonia solanacearum , Plant Roots/microbiology , Plant Roots/growth & development , Arabidopsis/microbiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/metabolism , Plant Diseases/microbiology , Cell Wall/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Soil Microbiology , Glucosyltransferases/metabolism
10.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801423

ABSTRACT

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Subject(s)
Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
11.
Environ Int ; 186: 108655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626494

ABSTRACT

The rhizosphere is one of the key determinants of plant health and productivity. Mixtures of pesticides are commonly used in intensified agriculture. However, the combined mechanisms underlying their impacts on soil microbiota remain unknown. The present study revealed that the rhizosphere microbiota was more sensitive to azoxystrobin and oxytetracycline, two commonly used pesticides, than was the microbiota present in bulk soil. Moreover, the rhizosphere microbiota enhanced network complexity and stability and increased carbohydrate metabolism and xenobiotic biodegradation as well as the expression of metabolic genes involved in defence against pesticide stress. Co-exposure to azoxystrobin and oxytetracycline had antagonistic effects on Arabidopsis thaliana growth and soil microbial variation by recruiting organic-degrading bacteria and regulating ABC transporters to reduce pesticide uptake. Our study explored the composition and function of soil microorganisms through amplicon sequencing and metagenomic approaches, providing comprehensive insights into the synergistic effect of plants and rhizosphere microbiota on pesticides and contributing to our understanding of the ecological risks associated with pesticide use.


Subject(s)
Arabidopsis , Microbiota , Oxytetracycline , Pyrimidines , Rhizosphere , Soil Microbiology , Strobilurins , Arabidopsis/microbiology , Arabidopsis/drug effects , Oxytetracycline/toxicity , Microbiota/drug effects , Soil Pollutants/toxicity , Pesticides/toxicity , Biodegradation, Environmental
12.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652336

ABSTRACT

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Subject(s)
Arabidopsis , Bacterial Proteins , Nicotiana , Plant Diseases , Reactive Oxygen Species , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics , Citrus/microbiology , Citrus/genetics , Citrus/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Liberibacter/pathogenicity , Liberibacter/physiology , Host-Pathogen Interactions , Plants, Genetically Modified , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizobiaceae/physiology , Disease Resistance/genetics
13.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38677281

ABSTRACT

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy , GTPase-Activating Proteins , Plant Immunity , Autophagy/physiology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Phytophthora infestans/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Protein Transport
14.
Microbiol Res ; 284: 127734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670037

ABSTRACT

The spread of livestock manure-borne antibiotic resistance genes (ARGs) into agroecosystems through manure application poses a potential threat to human health. However, there is still a knowledge gap concerning ARG dissemination in coalescing manure, soil and plant microbiomes. Here, we examined the fate of tetracycline resistance genes (TRGs) originating from pig manure microbiomes and spread in the soil-A thaliana system and explored the effects of microbial functions on TRGs spread at different interfaces. Our results indicate that the TRGs abundances in all microbiome continuum of the soil-A. thaliana system were significantly increased with the application of a living manure microbiome, although the addition of manure with both an active and inactive microbiome caused a shift in the microbial community composition. This was attributed to the increasing relative abundances of tetA, tetL, tetM, tetO, tetW and tolC in the system. The application of living manure with DOX residues resulted in the highest relative abundance of total TRGs (3.30×10-3 copies/16S rRNA gene copies) in the rhizosphere soil samples. Community coalescence of the manure and soil microbiomes increased the abundance of Firmicutes in the soil and root microbiome, which directly explains the increase in TRG abundance observed in these interfaces. In contrast, the leaf microbiome differed markedly from that of the remaining samples, indicating strong plant host filtering effects on Firmicutes and TRGs from pig manure. The random forest machine learning model revealed microbial functions and their significant positive correlation with TRG abundance in the microbiome continuum of the system. Our findings revealed that community coalescence is the main driver of TRG spread from manure to the soil and root microbiomes. Plant host filtering effects play a crucial role in allowing certain microbial groups to occupy ecological niches in the leaves, thereby limiting the establishment of manure-borne TRGs in aboveground plant tissues.


Subject(s)
Manure , Microbiota , RNA, Ribosomal, 16S , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Microbiota/genetics , Swine , Tetracycline Resistance/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Arabidopsis/microbiology , Genes, Bacterial/genetics , Rhizosphere , Plant Roots/microbiology , Soil/chemistry , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Leaves/microbiology
15.
Phytopathology ; 114(5): 1097-1105, 2024 May.
Article in English | MEDLINE | ID: mdl-38684315

ABSTRACT

The hormone salicylic acid (SA) plays a crucial role in plant immunity by activating responses that arrest pathogen ingress. SA accumulation also penalizes growth, a phenomenon visible in mutants that hyperaccumulate SA, resulting in strong growth inhibition. An important question, therefore, is why healthy plants produce basal levels of this hormone when defense responses are not activated. Here, we show that basal SA levels in unchallenged plants are needed for the expression of a number of immunity-related genes and receptors, such as RECEPTOR-LIKE PROTEIN 23 (RLP23). This was shown by depleting basal SA levels in transgenic Arabidopsis lines through the overexpression of the SA-inactivating hydroxylases DOWNY MILDEW-RESISTANT 6 (DMR6) or DMR6-LIKE OXYGENASE 1. RNAseq analysis revealed that the expression of a subset of immune receptor and signaling genes is strongly reduced in the absence of SA. The biological relevance of this was shown for RLP23: In SA-depleted and SA-insensitive plants, responses to the RLP23 ligand, the microbial pattern nlp24, were strongly reduced, whereas responses to flg22 remained unchanged. We hypothesize that low basal SA levels are needed for the expression of a subset of immune system components that enable early pathogen detection and activation of immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Diseases , Plant Immunity , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Plant Immunity/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plants, Genetically Modified
16.
Plant Sci ; 344: 112089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640973

ABSTRACT

Accurate nucleocytoplasmic transport of signal molecules is essential for plant growth and development. Multiple studies have confirmed that nucleocytoplasmic transport and receptors are involved in regulating plant disease resistance responses, however, little is known about the regulatory mechanism in plants. In this study, we showed that the mutant of the importin beta-like protein SAD2 exhibited a more susceptible phenotype than wild-type Col-0 after treatment with Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) experiments demonstrated that SAD2 interacts with the hypersensitive response (HR)-positive transcriptional regulator MYB30. Subcellular localization showed that MYB30 was not fully localized in the nucleus in sad2-5 mutants, and western-blot experiments further indicated that SAD2 was required for MYB30 nuclear trafficking during the pathogen infection process. A phenotypic test of pathogen inoculation demonstrated that MYB30 partially rescued the disease symptoms of sad2-5 caused by Pst DC3000, and that MYB30 worked downstream of SAD2 in plant pathogen defense. These results suggested that SAD2 might be involved in plant pathogen defense by mediating MYB30 nuclear trafficking. Taken together, our results revealed the important function of SAD2 in plant pathogen defense and enriched understanding of the mechanism of nucleocytoplasmic transport-mediated plant pathogen defense.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Diseases , Pseudomonas syringae , Transcription Factors , Pseudomonas syringae/physiology , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/immunology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Cell Nucleus/metabolism , Gene Expression Regulation, Plant
17.
Mol Plant Microbe Interact ; 37(5): 459-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38597923

ABSTRACT

Citrus Huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CLas), is one of the most destructive citrus diseases worldwide, and defense-related Citrus sinensis gene resources remain largely unexplored. Calcium signaling plays an important role in diverse biological processes. In plants, a few calcium-dependent protein kinases (CDPKs/CPKs) have been shown to contribute to defense against pathogenic microbes. The genome of C. sinensis encodes dozens of CPKs. In this study, the role of C. sinensis calcium-dependent protein kinases (CsCPKs) in C. sinensis defense was investigated. Silencing of CsCPK6 compromised the induction of defense-related genes in C. sinensis. Expression of a constitutively active form of CsCPK6 (CsCPK6CA) triggered the activation of defense-related genes in C. sinensis. Complementation of CsCPK6 rescued the defense-related gene induction in an Arabidopsis thaliana cpk4/11 mutant, indicating that CsCPK6 carries CPK activity and is capable of functioning as a CPK in Arabidopsis. Moreover, an effector derived from CLas inhibits defense induced by the expression of CsCPK6CA and autophosphorylation of CsCPK6, which suggests the involvement of CsCPK6 and calcium signaling in defense. These results support a positive role for CsCPK6 in C. sinensis defense against CLas, and the autoinhibitory regulation of CsCPK6 provides a potential genome-editing target for improving C. sinensis defense. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Citrus sinensis , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Protein Kinases , Citrus sinensis/genetics , Citrus sinensis/microbiology , Plant Diseases/microbiology , Plant Diseases/immunology , Protein Kinases/metabolism , Protein Kinases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Disease Resistance/genetics , Liberibacter/genetics , Liberibacter/physiology
18.
Genes (Basel) ; 15(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674433

ABSTRACT

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.


Subject(s)
Arabidopsis , Lysine , Plant Diseases , Proteome , Pseudomonas syringae , Acetylation , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Lysine/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/metabolism , Pseudomonas syringae/genetics , Virulence/genetics
19.
Curr Microbiol ; 81(6): 157, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658394

ABSTRACT

This manuscript reports the whole genome sequence of a conditionally pathogenic rhizobacterial strain, Pseudomonas putida AKMP7, which has been previously reported by us to be beneficial to Arabidopsis thaliana under well-watered conditions and pathogenic to the plant under water stress. As part of a study to understand this unique behavior, the whole genome sequence of this strain was analyzed. Based on the results, it was identified that the total length of the AKMP7 genome is 5,764,016 base pairs, and the total GC content of the genome is 62.93% (typical of P. putida). Using RAST annotation pipeline, it was identified that the genome has 5605 coding sequences, 80 repeat regions, 71 tRNA genes, and 22 rRNA genes. A total of 4487 functional proteins and 1118 hypothetical proteins were identified. Phylogenetic analysis has classified it as P. putida species, with a P value of 0.03. In order to identify close relatives of this strain, comparative genomics was performed with 30 other P. putida strains, taken from publicly available genome databases, using Average Nucleotide Identity (ANI) analysis. Whole genome comparison with these strains reveals that AKMP7 possesses Type-IV Secretion System (T4SS) with conjugative transfer functionality. Interestingly, the T4SS feature is absent in all the beneficial/harmless strains of P. putida that we analyzed. All the plant pathogenic bacteria that were analyzed had the T4SS feature in their genome, indicating its role in pathogenesis. This study aims to address important gaps in understanding the molecular mechanisms involved in the conditional/opportunistic pathogenesis of plant-associated, beneficial soil bacteria, using genomics approaches.


Subject(s)
Genome, Bacterial , Phylogeny , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/classification , Base Composition , Arabidopsis/microbiology , Arabidopsis/genetics , Bacterial Proteins/genetics , Plant Diseases/microbiology , Whole Genome Sequencing , Sequence Analysis, DNA
20.
Int. microbiol ; 27(2): 337-347, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-232284

ABSTRACT

The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50–100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.(AU)


Subject(s)
Humans , Male , Female , Microbiology , Arabidopsis/microbiology , Salt Tolerance , Chenopodiaceae , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...