Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.894
Filter
2.
Nat Commun ; 15(1): 4729, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830897

ABSTRACT

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Cohesins , Chromosome Segregation , Mutation , Chromatids/metabolism , Chromatids/genetics , Evolution, Molecular , Meiosis/genetics
3.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824148

ABSTRACT

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
4.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832933

ABSTRACT

Modification of pectin, a component of the plant cell wall, is required to facilitate signaling by a RALF peptide, which is essential for many physiological and developmental processes.


Subject(s)
Pectins , Signal Transduction , Pectins/metabolism , Pectins/chemistry , Cell Wall/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
5.
Nat Commun ; 15(1): 3895, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719832

ABSTRACT

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Gene Expression Regulation, Plant , Gibberellins , Meristem , Signal Transduction , Gibberellins/metabolism , Meristem/metabolism , Meristem/growth & development , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Growth Regulators/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plants, Genetically Modified
6.
Glycobiology ; 34(6)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38690785

ABSTRACT

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Subject(s)
Arabidopsis , Cellulose , Glucosylceramides , Glucosyltransferases , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism , Cellulose/biosynthesis , Glucosylceramides/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Cell Wall/metabolism
7.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38699898

ABSTRACT

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Mutation , Signal Transduction , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Singlet Oxygen/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Mutation/genetics , Photosynthesis/genetics
8.
Plant Signal Behav ; 19(1): 2348917, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38704856

ABSTRACT

Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Roots , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Plant Roots/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Darkness , Light , Seedlings/metabolism , Indoleacetic Acids/metabolism
9.
Biochem Biophys Res Commun ; 717: 150049, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714014

ABSTRACT

Acquired osmotolerance induced by initial exposure to mild salt stress is widespread across Arabidopsis thaliana ecotypes, but the mechanism underlying it remains poorly understood. To clarify it, we isolated acquired osmotolerance-deficient 1 (aod1), a mutant highly sensitive to osmotic stress, from ion-beam-irradiated seeds of Zu-0, an ecotype known for its remarkably high osmotolerance. Aod1 showed growth inhibition with spotted necrotic lesions on the rosette leaves under normal growth conditions on soil. However, its tolerance to salt and oxidative stresses was similar to that of the wild type (WT). Genetic and genome sequencing analyses suggested that the gene causing aod1 is identical to CONSTITUTIVELY ACTIVATED CELL DEATH 1 (CAD1). Complementation with the WT CAD1 gene restored the growth and osmotolerance of aod1, indicating that mutated CAD1 is responsible for the observed phenotypes in aod1. Although CAD1 is known to act as a negative regulator of immune response, transcript levels in the WT increased in response to osmotic stress. Aod1 displayed enhanced immune response and cell death under normal growth conditions, whereas the expression profiles of osmotic response genes were comparable to those of the WT. These findings suggest that autoimmunity in aod1 is detrimental to osmotolerance. Overall, our results suggest that CAD1 negatively regulates immune responses under osmotic stress, contributing to osmotolerance in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Osmotic Pressure , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Immunity/genetics
10.
Sci Rep ; 14(1): 11451, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769443

ABSTRACT

The SMALL ACIDIC PROTEIN (SMAP) gene is evolutionarily indispensable for organisms. There are two copies of the SMAP gene in the Arabidopsis thaliana genome, namely, SMAP1 and SMAP2. The function of SMAP2 is similar to that of SMAP1, and both can mediate 2,4-D responses in the root of Arabidopsis. This study cloned the AtSMAP2 genetic promoter sequence. Two promoter fragments of different lengths were designed according to the distribution of their cis-acting elements, and the corresponding ß- glucuronidase (GUS) expression vector was constructed. The expression activity of promoters of two lengths, 1993 bp and 997 bp, was studied by the genetic transformation in Arabidopsis. The prediction results of cis-acting elements in the promoter show that there are many hormone response elements in 997 bp, such as three abscisic acid response elements ABRE, gibberellin response elements P-box and GARE-motif and auxin response element AuxRR-core. Through GUS histochemical staining and qRT‒PCR analysis, it was found that the higher promoter activity of PAtSMAP2-997, compared to PAtSMAP2-1993, drove the expression of GUS genes at higher levels in Arabidopsis, especially in the root system. The results provide an important basis for subsequent studies on the regulation of AtSMAP2 gene expression and biological functions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/genetics , Plant Roots/genetics , Plant Roots/metabolism , Response Elements
11.
Commun Biol ; 7(1): 561, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734744

ABSTRACT

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Protein Binding , Models, Molecular , Amino Acid Sequence , Protein Domains
13.
PLoS Biol ; 22(5): e3002592, 2024 May.
Article in English | MEDLINE | ID: mdl-38691548

ABSTRACT

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Subject(s)
Arabidopsis , Carbon Dioxide , Models, Biological , Plant Stomata , Signal Transduction , Plant Stomata/drug effects , Plant Stomata/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Computer Simulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
14.
Sci Adv ; 10(20): eadn0895, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758793

ABSTRACT

SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.


Subject(s)
Arabidopsis Proteins , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases , Sugar Phosphates , Trehalose , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/metabolism , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Protein Binding , Arabidopsis/metabolism , Binding Sites , Transcription Factors
15.
Physiol Plant ; 176(3): e14351, 2024.
Article in English | MEDLINE | ID: mdl-38779764

ABSTRACT

Fluorescent labelling of proteins enables the determination of their spatiotemporal localization but, sometimes, it can perturb their activity, native localization, and functionality. Spot-tag is a12-amino acid peptide recognized by a single-domain nanobody and could potentially resolve the issues associated with large fluorescence tags due to its small size. Here, using as an example the microtubule motor CENTROMERIC PROTEIN E-RELATED KINESIN 7.3 (KIN7.3), we introduce the spot-tag for protein labelling in fixed and living plant cells. Spot-tagging and detection by an anti-spot nanobody of ectopically expressed KIN7.3 did not interfere with its native localization. Most importantly, our spot-tagging pipeline facilitated the localization of KIN7.3 much more rapidly and likely accurately than labelling with large fluorescent proteins or even immunolocalization approaches. We should, though, note some limitations we have not resolved yet. Spot-tagging is functional only in fixed cells; it is available only as two fluorophores and may create a noisy background during imaging. However, we foresee that, besides the limitations of this method, spot-tagging will apply to many proteins, offsetting activity perturbations and low photon quantum yields of other protein-tagging approaches.


Subject(s)
Plant Cells , Plant Cells/metabolism , Kinesins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
16.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Article in English | MEDLINE | ID: mdl-38767756

ABSTRACT

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Potyvirus/pathogenicity , Potyvirus/physiology , Arabidopsis/virology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication , Nicotiana/virology , Nicotiana/genetics
17.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38723179

ABSTRACT

Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.


Subject(s)
Arabidopsis , Oryza , Transcription Factors , Oryza/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Evolution, Molecular , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
18.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780624

ABSTRACT

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glucosyltransferases , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
19.
Enzyme Microb Technol ; 178: 110455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723387

ABSTRACT

Thymoquinone, extracted from the black seeds of Nigella sativa, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a Saccharomyces cerevisiae strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from Origanum vulgare was expressed in S. cerevisiae for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from Arabidopsis thaliana, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.


Subject(s)
Benzoquinones , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Benzoquinones/metabolism , Thymol/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
20.
Plant Physiol Biochem ; 211: 108613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696868

ABSTRACT

Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.


Subject(s)
Arabidopsis , Eleusine , Plants, Genetically Modified , Stress, Physiological , Eleusine/genetics , Eleusine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Phylogeny , Antiporters/metabolism , Antiporters/genetics , Metals/metabolism , Calcium/metabolism , Cation Transport Proteins , Arabidopsis Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...