Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.803
Filter
1.
Proc Biol Sci ; 291(2023): 20240612, 2024 May.
Article in English | MEDLINE | ID: mdl-38772419

ABSTRACT

Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweed Lemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant-microbiome symbiosis.


Subject(s)
Ecosystem , Microbiota , Food Chain , Araceae/microbiology , Araceae/physiology , Symbiosis , Population Density , Phosphorus/metabolism
2.
J Exp Bot ; 75(10): 2776-2777, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764321
3.
Bull Environ Contam Toxicol ; 112(6): 77, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758236

ABSTRACT

Fulvic acids (FA) are environmentally prevalent components of dissolved organic carbon. Little research has evaluated their potential influence on the bioavailability of herbicides to non-target aquatic plants. This study evaluated the potential impacts of FA on the bioavailability of atrazine (ATZ) to the aquatic plant Lemna minor. Plants were exposed to 0, 15, 30, 60, 125, and 750 µg/L ATZ in media containing three FA concentrations (0, 5, and 15 mg/L) in a factorial study under static conditions. Fronds were counted after 7- and 14-days exposure and intrinsic growth rates (IGR) and total frond yields were calculated for analysis. Atrazine NOAECs and LOAECs within each FA treatment series (0, 5, or 15 mg/L) were identified and EC50s were estimated. NOAEC/LOAECs for yield and IGR were 60/125 µg/L except for yield in the 0 mg/L-FA series (30/60) and IGR in the 5 mg/L-FA series (30/60). NOAEC/LOAECs were 30/60 µg/L for all treatments and both endpoints after 14 days exposure. EC50s ranged from 88.2 to 106.1 µg/L (frond production 7 DAT), 158.0-186.0 µg/L (IGR, 7 DAT), 74.7-86.3 µg/L (frond production, 14 DAT), and 144.1-151.3 µg/L (IGR, 14 DAT). FA concentrations did not influence the toxicity of ATZ.


Subject(s)
Araceae , Atrazine , Benzopyrans , Herbicides , Water Pollutants, Chemical , Herbicides/toxicity , Benzopyrans/toxicity , Atrazine/toxicity , Araceae/drug effects , Water Pollutants, Chemical/toxicity
4.
Commun Biol ; 7(1): 581, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755313

ABSTRACT

Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.


Subject(s)
Epigenomics , Genome, Plant , Reproduction, Asexual , Selection, Genetic , Reproduction, Asexual/genetics , Epigenomics/methods , DNA Methylation , Biological Evolution , Genetic Variation , Araceae/genetics , Evolution, Molecular , Genomics/methods
5.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792197

ABSTRACT

The impact of fluorine on plants remains poorly understood. We examined duckweed growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally, fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying distances from the manure pile. Fresh manure contained 37-48 mg F- × kg-1, while soil extracts contained 2.1 to 4.9 mg F- × kg-1. We evaluated the physiological effects of fluorine on duckweed cultured on soil extracts or in 50% Murashige-Skoog (MS) medium supplemented with fluorine concentrations matching those in soil samples (2.1 to 4.9 mg F- × L-1), as well as at 0, 4, and 210 mg × L-1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F- × L-1 reduced the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+. This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and formation of a new band of the F--chlorophyll a complex at λ = 421 nm. Moreover, plants exposed to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride concentration exceeded 4.9 mg × L-1. Consequently, fluorine damages chlorophyll a, disrupts the activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the effects of these disruptions are too subtle to be discerned by the naked human eye.


Subject(s)
Araceae , Chlorophyll , Fluorides , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Chlorophyll/metabolism , Fluorides/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Soil/chemistry , Manure/analysis , Environmental Pollution/analysis
6.
Environ Sci Pollut Res Int ; 31(24): 35055-35068, 2024 May.
Article in English | MEDLINE | ID: mdl-38714618

ABSTRACT

Mercury (Hg) is a prevalent and harmful contaminant that persists in the environment. For phytoremediation, it is important to discover which plants can bioaccumulate meaningful amounts of Hg while also tolerating its toxicity. Additionally, increasing biodiversity could create a more resilient and self-sustaining system for remediation. This study explores whether mixed populations of Lemna minor and Spirodela polyrhiza can better bioaccumulate and tolerate Hg than monocultures. Mono- and mixed cultures of L. minor and S. polyrhiza were grown in mesocosms of 0.5 µg/L or 100 µg/L Hg (HgCl2) spiked water for 96 h. Change in weight of duckweed was used to assess Hg tolerance. Diffusive gradients in thin-films (DGTs) were used as surrogate monitoring devices for bioavailable levels of Hg. For biomass growth, the mixed culture of the L. minor was greater than the monoculture at the high dose. The L. minor accumulated more Hg in the mixed culture at the low dose while the S. polyrhiza was higher in the mixed at the high dose. Hg speciation in water was modeled using Windermere Humic Aqueous Model 7 (WHAM7) to compare the bioavailable species indicated by the DGTs.  Potentially due to the controlled conditions, the WHAM7 output of bioavailable Hg was almost 1:1 to that estimated by the DGTs, indicating good predictive capability of geochemical modeling and passive sampler DGT on metal bioavailability. Overall, the mixed cultures statistically performed as well as or better than the monocultures when tolerating and bioaccumulating Hg. However, there needs to be further work to see if the significant differences translate into practical differences worth the extra resources to maintain multiple species.


Subject(s)
Araceae , Biodegradation, Environmental , Mercury , Mercury/metabolism , Araceae/metabolism , Bioaccumulation , Water Pollutants, Chemical
7.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669927

ABSTRACT

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Subject(s)
Cadmium , Lignin , MicroRNAs , Plant Roots , Lignin/chemistry , Cadmium/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , MicroRNAs/metabolism , MicroRNAs/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Polymerization/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Araceae/drug effects , Araceae/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
8.
Aquat Toxicol ; 271: 106924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678909

ABSTRACT

The effects of fluoxetine (antidepressant) and ketoprofen (analgesic) on aquatic ecosystems are largely unknown, particularly as a mixture. This work aimed at determining the effect of sublethal concentrations of both compounds individually (0.050 mg/L) and their mixture (0.025 mg/L each) on aquatic communities at a microcosm scale for a period of 14 d. Several physicochemical parameters were monitored to estimate functional alterations in the ecosystem, while model organisms (Daphnia magna, Lemna sp., Raphidocelis subcapitata) and the sequencing of 16S/18S rRNA genes permitted to determine effects on specific populations and changes in community composition, respectively. Disturbances were more clearly observed after 14 d, and overall, the microcosms containing fluoxetine (alone or in combination with ketoprofen) produced larger alterations on most physicochemical and biological variables, compared to the microcosm containing only ketoprofen, which suffered less severe changes. Differences in nitrogen species suggest alterations in the N-cycle due to the presence of fluoxetine; similarly, all pharmaceutical-containing systems decreased the brood rate of D. magna, while individual compounds inhibited the growth of Lemna sp. No clear trends were observed regarding R. subcapitata, as indirectly determined by chlorophyll quantification. The structure of micro-eukaryotic communities was altered in the fluoxetine-containing systems, whereas the structure of bacterial communities was affected to a greater extent by the mixture. The disruptions to the equilibrium of the microcosm demonstrate the ecological risk these compounds pose to aquatic ecosystems.


Subject(s)
Fluoxetine , Ketoprofen , Water Pollutants, Chemical , Fluoxetine/toxicity , Ketoprofen/toxicity , Animals , Water Pollutants, Chemical/toxicity , Ecosystem , Daphnia/drug effects , Araceae/drug effects
9.
Environ Pollut ; 349: 123881, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580063

ABSTRACT

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Subject(s)
Araceae , Biomass , Chlorella , Metals, Heavy , Microalgae , Radioisotopes , Metals, Heavy/analysis , Metals, Heavy/metabolism , Chlorella/growth & development , Chlorella/metabolism , Araceae/metabolism , Microalgae/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Chlorophyll/metabolism
10.
Phytochemistry ; 223: 114111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688443

ABSTRACT

Symplocarpus foetidus (L.) Salisb. (eastern skunk cabbage) occurs across a broad geographic range of northeastern North America, blooming in winter between December and March. The inflorescences are well-known for their thermogenic and thermoregulatory metabolic capabilities. The perceptual qualities of their fetid floral aroma have been described widely in the literature, but to date the floral volatile composition remained largely unknown. Here we present a detailed study of the floral scent produced by S. foetidus collected from intact female- and male-stage inflorescences and from dissected floral parts. Our results show a large range of biosynthetically diverse volatiles including nitrogen- and sulfur-containing compounds, monoterpenes, benzenoids, and aliphatic esters and alcohols. We document high inter-individual variation with some organ-specific volatile trends but no clear strong variation based on sexual stage. Multivariate data analysis revealed two distinct chemotypes from our study populations that are not defined by sexual stage or population origin. The chemotype differences may explain the bimodal perceptual descriptions in earlier work which vary between highly unpleasant/fetid and pleasant/apple-like. We discuss the results in ecological contexts including potential for floral mimicry, taking into account existing pollination studies for the species. We also discuss the results in evolutionary contexts, comparing our scent data to published scent data from the close sister species Symplocarpus renifolius. Future work should more closely examine the chemotype occurrence and frequency within these and other populations, and the impact these chemotypes may have on pollinator attraction and reproductive success.


Subject(s)
Araceae , Flowers , Odorants , Flowers/chemistry , Araceae/chemistry , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Volatile Organic Compounds/analysis , Pollination
11.
Aquat Toxicol ; 269: 106886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458065

ABSTRACT

Even though boron is a widely used element in various industries and a contributor to water pollution worldwide, few studies have examined the toxicity of boron in aquatic plants. EDTA is used to maintain aquatic plants cultures, however it is possible to modify the toxicity of metals. The objective of this study is to assess the toxicity of boron in aquatic plants and explore the impact of EDTA presence on the resulting toxic responses. Floating watermoss Salvinia natans and duckweed Lemna minor were exposed to concentrations ranging from 5 to 100 mg/L for 7 days and 1 to 60 mg/L for 3 days, respectively. Growth and photosynthetic activity parameters were investigated in the presence and absence of EDTA. Growth inhibitions in both aquatic plants were observed in a concentration-dependent manner, irrespective of the presence or absence of EDTA. For instance, based on the specific growth rate (leaves coverage), EC10 values for S. natans were calculated as 12.7 (9.9-15.3) mg/L and 8.0 (5.8-10.3) mg/L with and without EDTA, respectively. In the case of L. minor, EC10 values were calculated as 1.3 (0.8-1.89) mg/L and 2.0 (0.4-4.3) mg/L with EDTA without EDTA, respectively. Significant effects were also observed on the photosynthetic capacity, however there was no change in the increase of boron concentration. Generally, negligible effects of EDTA to the toxicity of boron were observed in the present study. By comparing toxicity results based on the presence and absence of EDTA, which is an essential element in the test medium, the results of this study are expected to be utilized for the ecological risk assessment of boron in aquatic ecosystems.


Subject(s)
Araceae , Tracheophyta , Water Pollutants, Chemical , Boron/toxicity , Ecosystem , Edetic Acid/pharmacology , Water Pollutants, Chemical/toxicity
12.
Zootaxa ; 5405(2): 246-264, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38480387

ABSTRACT

This paper contributes further studies Chinese cave crickets and describes seven new species and the female sex of Rhaphidophora longitabula Bian, Zhu & Shi, 2017. All the specimens are deposited in Guangxi Normal University.


Subject(s)
Araceae , Orthoptera , Animals , Female , Animal Distribution , Animal Structures , Body Size , Caves , China , Organ Size
13.
Sci Rep ; 14(1): 5873, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467810

ABSTRACT

Lemnoideae, commonly referred to as the duckweed, are aquatic plants found worldwide. Wolffia species are known for their extreme reduction in size and complexity, lacking both roots and leaves, and they hold the distinction of being the smallest plants among angiosperms. Interestingly, it belongs to the Araceae family, despite its apparent morphological differences from land plants in the same family. Traditional morphological methods have limitations in classifying these plants, making molecular-level information essential. The chloroplast genome of Wolffia arrhiza is revealed that a total length of 169,602 bp and a total GC content of 35.78%. It follows the typical quadripartite structure, which includes a large single copy (LSC, 92,172 bp) region, a small single copy (SSC, 13,686 bp) region, and a pair of inverted repeat (IR, 31,872 bp each) regions. There are 131 genes characterized, comprising 86 Protein-Coding Genes, 37 Transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. Moreover, 48 simple sequence repeats and 32 long repeat sequences were detected. Comparative analysis between W. arrhiza and six other Lemnoideae species identified 12 hotspots of high nucleotide diversity. In addition, a phylogenetic analysis was performed using 14 species belonging to the Araceae family and one external species as an outgroup. This analysis unveiled W. arrhiza and Wolffia globosa as closely related sister species. Therefore, this research has revealed the complete chloroplast genome data of W. arrhiza, offering a more detailed understanding of its evolutionary position and phylogenetic categorization within the Lemnoideae subfamily.


Subject(s)
Araceae , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Araceae/genetics , Genomics
14.
Plant Physiol Biochem ; 208: 108485, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461755

ABSTRACT

Duckweed, a floating macrophyte, has attracted interest in various fields such as animal feedstocks and bioenergy productions. Its enriched nutritional content and rapid growth rate make it particularly promising. However, common laboratory cultures of duckweed often experience fronds layering, diminishing the efficiency of sunlight capturing due to limited surface area on conventional cultivation platforms. In this work, we aimed to address the issue of fronds layering by introducing a novel cultivation platform - a superhydrophobic coated acrylic sheet. The sheet was prepared by spray-coating a suspension of beeswax and ethanol, and its effectiveness was evaluated by comparing the growth performance of giant duckweed, Spirodela polyrhiza, on this platform with that on a modified version. The superhydrophobic coated acrylic sheet (SHPA) and its variant with a metal mesh added (SHPAM) were employed as growing platforms, with a glass jar serving as the control. The plantlets were grown for 7 days with similar growth conditions under low light stress (25 µmol/m2/s). SHPAM demonstrated superior growth performance, achieving a mass gain of 102.12 ± 17.18 %, surpassing both SHPA (89.67 ± 14.97 %) and the control (39.26 ± 8.94 %). For biochemical compositions, SHPAM outperformed in chlorophyll content, protein content and lipid content. The values obtained were 1.021 ± 0.076 mg/g FW, 14.59 ± 0.58 % DW and 6.21 ± 0.75 % DW respectively. Therefore, this work proved that incorporation of superhydrophobic coatings on a novel cultivation platform significantly enhanced the biomass production of S. polyrhiza. Simultaneously, the biochemical compositions of the duckweeds were well-maintained, showcasing the potential of this approach for optimized duckweed cultivation.


Subject(s)
Araceae , Light , Animals , Biomass , Hydrophobic and Hydrophilic Interactions
15.
Ecotoxicol Environ Saf ; 274: 116209, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492482

ABSTRACT

Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727 µg/L (planted with V. natans) and 61.607 µg/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303 µg/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582 µg/L under 5 mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.


Subject(s)
Araceae , Caffeic Acids , Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Humans , Ecosystem , Water Pollutants, Chemical/analysis , Halogenation , Araceae/metabolism , Metals, Heavy/analysis
16.
BMC Plant Biol ; 24(1): 159, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429715

ABSTRACT

BACKGROUND: Flower buds of Anthurium andraeanum frequently cease to grow and abort during the early flowering stage, resulting in prolonged planting times and increased commercialization costs. Nevertheless, limited knowledge exists of the mechanism of flower development after initiation in A. andraeanum. RESULTS: In this study, the measurement of carbohydrate flow and intensity between leaves and flowers during different growth stages showed that tender leaves are strong sinks and their concomitant flowers are weak ones. This suggested that the tender leaves compete with their concomitant flower buds for carbohydrates during the early growth stages, potentially causing the abortion of the flower buds. The analysis of transcriptomic differentially expressed genes suggested that genes related to sucrose metabolism and auxin response play an important role during flower bud development. Particularly, co-expression network analysis found that AaSPL12 is a hub gene engaged in flower development by collaborating carbohydrate and auxin signals. Yeast Two Hybrid assays revealed that AaSPL12 can interact with AaARP, a protein that serves as an indicator of dormancy. Additionally, the application of exogenous IAA and sucrose can suppress the expression of AaARP, augment the transcriptional abundance of AaSPL12, and consequently expedite flower development in Anthurium andraeanum. CONCLUSIONS: Collectively, our findings indicated that the combination of auxin and sugar signals could potentially suppress the repression of AaARP protein to AaSPL12, thus advancing the development of flower buds in Anthurium andraeanum.


Subject(s)
Araceae , Reproduction , Female , Pregnancy , Humans , Sucrose , Araceae/genetics , Flowers/genetics , Indoleacetic Acids
17.
Environ Pollut ; 347: 123762, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38479705

ABSTRACT

Toxic substances, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, can accumulate in soil, posing a risk to human health and the environment. To reduce the risk of exposure, rapid identification and remediation of potentially hazardous soils is necessary. Adsorption of contaminants by activated carbons and clay materials is commonly utilized to decrease the bioavailability of chemicals in soil and environmental toxicity in vitro, and this study aims to determine their efficacy in real-life soil samples. Two ecotoxicological models (Lemna minor and Caenorhabditis elegans) were used to test residential soil samples, known to contain an average of 5.3, 262, and 9.6 ppm of PAHs, lead, and mercury, for potential toxicity. Toxicity testing of these soils indicated that 86% and 58% of soils caused ≤50% inhibition of growth and survival of L. minor and C. elegans, respectively. Importantly, 3 soil samples caused ≥90% inhibition of growth in both models, and the toxicity was positively correlated with levels of heavy metals. These toxic soil samples were prioritized for remediation using activated carbon and SM-Tyrosine sorbents, which have been shown to immobilize PAHs and heavy metals, respectively. The inclusion of low levels of SM-Tyrosine protected the growth and survival of L. minor and C. elegans by 83% and 78%, respectively from the polluted soil samples while activated carbon offered no significant protection. These results also indicated that heavy metals were the driver of toxicity in the samples. Results from this study demonstrate that adsorption technologies are effective strategies for remediating complex, real-life soil samples contaminated with hazardous pollutants and protecting natural soil and groundwater resources and habitats. The results highlight the applicability of these ecotoxicological models as rapid screening tools for monitoring soil quality and verifying the efficacy of remediation practices.


Subject(s)
Araceae , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Animals , Humans , Clay , Caenorhabditis elegans , Charcoal , Metals, Heavy/toxicity , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Tyrosine , Soil Pollutants/analysis
18.
Environ Sci Pollut Res Int ; 31(19): 28090-28104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530520

ABSTRACT

The glass manufacturing industry produces hazardous effluent that is difficult to manage and causes numerous environmental problems when disposed of in the open. In this study, an attempt was made to study the phytoremediation feasibility of water lettuce (Pistia stratiotes L.), a free-floating aquatic macrophyte, for the removal of six heavy metals from glass industry effluent (GIE) at varying concentrations (0, 25, 50, 75, and 100%). After a 40-day experiment, the results showed that 25% GIE dilution showed maximum removal of heavy metals i.e., Cu (91.74%), Cr (95.29%), Fe (86.47%), Mn (92.95%), Pb (87.10%), and Zn (91.34%), respectively. The bioaccumulation, translocation, and Pearson correlation studies showed that the amount of heavy metals absorbed by vegetative parts of P. stratiotes was significantly correlated with concentrations. The highest biomass production, chlorophyll content, relative growth rate, and biomass productivity were also noted in the 25% GIE treatment. Moreover, the multiple linear regression models developed for the prediction of heavy metal uptake by P. stratiotes also showed good performance in determining the impact of GIE properties. The models showed a high coefficient of determination (R2 > 0.99), low mean average normalizing error (MANE = 0.01), and high model efficiency (ME > 0.99) supporting the robustness of the developed equations. This study outlined an efficient method for the biological treatment of GIE using P. stratiotes to reduce risks associated with its unsafe disposal.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Water Pollutants, Chemical , Araceae/metabolism , Glass , Industrial Waste
19.
Sci Total Environ ; 926: 171981, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547997

ABSTRACT

Floating Vegetated System (FVS) emerged as a green and sustainable technology, presenting a viable solution for treating heavy metals (HMs) contaminated water without disrupting the food web. Pistia stratiotes has been used in the design of FVS due to its abundance of aerenchyma tissues, which contribute to its ability to remain buoyant. FVS exhibited significant HMs removal efficiencies, with Pb top at average 84.4 %, followed by Zn (81.1 %), Cr (78.5 %), Cu (76.5 %) and Ni (73 %). Bio-concentration Factor (BCF) and Translocation Factor (TF) values evaluated the plant's adeptness in metal uptake. For plants treated with Cu, the highest post-treatment chlorophyll content of 9 ± 1 mg.ml-1 was observed while Zn induced plant shows the lowest content of 7.1 ± 0.4 mg.ml-1. Using Box-Behnken Design (BBD), the system achieved 81.48 % Pb removal under optimized conditions such as initial Pb conc. of 9.25 mg. l-1, HRT of 24.49 days and a water depth of 26.52 cm. ANOVA analysis highlighted the significant impact of all the factors such as initial HM conc., HRT and wastewater depth on FVS performance. Kinetic analysis estimated a closer observance to the zero-order model, supported by high determination coefficient (R2) values. In conclusion, the FVS, as one of the most eco-friendly technologies, demonstrates higher potential for treating polluted water bodies, offering a sustainable remedy to global metal pollution challenges. Research on FVS for HMs removal is an area of ongoing interest and there are several potential future studies that could be pursued to further understand and optimize their effectiveness such as optimization of plant species, enhancement of plant-metal interactions, effects of environmental factors, economic feasibility studies, disposal of heavy metals accumulated plant, scale-up and application in real-world settings, etc.


Subject(s)
Araceae , Metals, Heavy , Water Pollutants, Chemical , Lead , Kinetics , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Water , Zinc/analysis
20.
Molecules ; 29(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474634

ABSTRACT

The inclusion of protein in the regular human diet is important for the prevention of several chronic diseases. In the search for novel alternative protein sources, plant-based proteins are widely explored from a sustainable and ecological point of view. Duckweed (Lemna minor), also known as water lentil, is an aquatic plant with potential applications for human consumption due to its protein content and carbohydrate contents. Among all the conventional and novel protein extraction methods, the utilization of ultrasound has attracted the attention of scientists because of its effects on improving protein extraction and its functionalities. In this work, a Box-Behnken experimental design was proposed to optimize the alkaline extraction of protein from duckweed. In addition, an exploration of the effects of ultrasound on the morphological, structural, and functional properties of the extracted protein was also addressed. The optimal extraction parameters were a pH of 11.5 and an ultrasound amplitude and processing time of 60% and 20 min, respectively. These process conditions doubled the protein content extracted in comparison to the value from the initial duckweed sample. Furthermore, the application of ultrasound during the extraction of protein generated changes in the FTIR spectra, color, and structure of the duckweed protein, which resulted in improvements in its solubility, emulsifying properties, and foaming capacity.


Subject(s)
Araceae , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...