Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 743
Filter
1.
World J Microbiol Biotechnol ; 40(7): 219, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809492

ABSTRACT

Protectins, 10,17-dihydroxydocosahexaenoic acids (10,17-DiHDHAs), are belonged to specialized pro-resolving mediators (SPMs). Protectins are generated by polymorphonuclear leukocytes in humans and resolve inflammation and infection in trace amounts. However, the quantitative production of protectin DX 10-epimer (10-epi-PDX, 10R,17S-4Z,7Z,11E,13Z,15E,19Z-DiHDHA) has been not attempted to date. In this study, 10-epi-PDX was quantitatively produced from docosahexaenoic acid (DHA) by serial whole-cell biotransformation of Escherichia coli expressing arachidonate (ARA) 8R-lipoxygenase (8R-LOX) from the coral Plexaura homomalla and E. coli expressing ARA 15S-LOX from the bacterium Archangium violaceum. The optimal bioconversion conditions to produce 10R-hydroxydocosahexaenoic acid (10R-HDHA) and 10-epi-PDX were pH 8.0, 30 °C, 2.0 mM DHA, and 4.0 g/L cells; and pH 8.5, 20 °C, 1.4 mM 10R-HDHA, and 1.0 g/L cells, respectively. Under these optimized conditions, 2.0 mM (657 mg/L) DHA was converted into 1.2 mM (433 mg/L) 10-epi-PDX via 1.4 mM (482 mg/L) 10R-HDHA by the serial whole-cell biotransformation within 90 min, with a molar conversion of 60% and volumetric productivity of 0.8 mM/h (288 mg/L/h). To the best of our knowledge, this is the first quantitative production of 10-epi-PDX. Our results contribute to the efficient biocatalytic synthesis of SPMs.


Subject(s)
Anthozoa , Biotransformation , Docosahexaenoic Acids , Escherichia coli , Docosahexaenoic Acids/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Anthozoa/microbiology , Anthozoa/metabolism , Animals , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate Lipoxygenases/metabolism , Arachidonate Lipoxygenases/genetics , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373195

ABSTRACT

The arachidonic acid lipoxygenase 15B (ALOX15B) orthologs of men and mice form different reaction products when arachidonic acid is used as the substrate. Tyr603Asp+His604Val double mutation in mouse arachidonic acid lipoxygenase 15b humanized the product pattern and an inverse mutagenesis strategy murinized the specificity of the human enzyme. As the mechanistic basis for these functional differences, an inverse substrate binding at the active site of the enzymes has been suggested, but experimental proof for this hypothesis is still pending. Here we expressed wildtype mouse and human arachidonic acid lipoxygenase 15B orthologs as well as their humanized and murinized double mutants as recombinant proteins and analyzed the product patterns of these enzymes with different polyenoic fatty acids. In addition, in silico substrate docking studies and molecular dynamics simulation were performed to explore the mechanistic basis for the distinct reaction specificities of the different enzyme variants. Wildtype human arachidonic acid lipoxygenase 15B converted arachidonic acid and eicosapentaenoic acid to their 15-hydroperoxy derivatives but the Asp602Tyr+Val603His exchange murinized the product pattern. The inverse mutagenesis strategy in mouse arachidonic acid lipoxygenase 15b (Tyr603Asp+His604Val exchange) humanized the product pattern with these substrates, but the situation was different with docosahexaenoic acid. Here, Tyr603Asp+His604Val substitution in mouse arachidonic acid lipoxygenase 15b also humanized the specificity but the inverse mutagenesis (Asp602Tyr+Val603His) did not murinize the human enzyme. With linoleic acid Tyr603Asp+His604Val substitution in mouse arachidonic acid lipoxygenase 15b humanized the product pattern but the inverse mutagenesis in human arachidonic acid lipoxygenase 15B induced racemic product formation. Amino acid exchanges at critical positions of human and mouse arachidonic acid lipoxygenase 15B orthologs humanized/murinized the product pattern with C20 fatty acids, but this was not the case with fatty acid substrates of different chain lengths. Asp602Tyr+Val603His exchange murinized the product pattern of human arachidonic acid lipoxygenase 15B with arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. An inverse mutagenesis strategy on mouse arachidonic acid lipoxygenase 15b (Tyr603Asp+His604Val exchange) did humanize the reaction products with arachidonic acid and eicosapentaenoic acid, but not with docosahexaenoic acid.


Subject(s)
Arachidonate Lipoxygenases , Eicosapentaenoic Acid , Humans , Animals , Mice , Arachidonate Lipoxygenases/metabolism , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids , Arachidonic Acid/metabolism , Fatty Acids , Substrate Specificity , Arachidonate 15-Lipoxygenase/metabolism
3.
Appl Microbiol Biotechnol ; 107(1): 247-260, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36441205

ABSTRACT

The putative lipoxygenase (LOX) from the proteobacterium Shewanella hanedai was determined to be an 82 kDa monomeric enzyme by SDS-PAGE and gel filtration chromatography analysis. LOX was identified as a single-dioxygenating arachidonate (ARA) 9S-LOX by analyzing ARA-derived bioconversion products using high-performance liquid chromatography with reverse-, normal-, and chiral-phase columns and evaluating kinetic parameters for C20- and C22-polyunsaturated fatty acids (PUFAs). The catalytic efficiency (kcat/Km) values of 9S-LOX from S. hanedai for ARA, eicosapentaenoic acid, and docosahexaenoic acid were 3.1-, 4.1-, and 2.5-fold higher, respectively, than those only reported 9S-LOX from Sphingopyxis macrogoltabida with double-dioxygenating activity. To promote the production of C20 9S- and C22 11S-hydroxy fatty acids (HFAs) using Escherichia coli expressing 9S-LOX from S. hanedai, bioconversion conditions, including temperature, pH, solvent type and its concentration, concentrations of cells, and substrate, were optimized to 25 °C, pH 8.5, 6% (v/v) dimethyl sulfoxide, 0.2 g/l cells, and 7 mM ARA as substrate in a 500 ml-Erlenmeyer baffled flask with 50 ml reaction solution with agitation at 200 rpm in the presence of 10 mM cysteine as a reduction agent, respectively. Under these conditions, 6.4 mM 9S-hydroxyeicosatetraenoic acid, 6.2 mM 9S-hydroxyeicosapentaenoic acid, and 5.9 mM 11S-hydroxydocosahexaenoic acid were produced in 30 min, 40 min, and 60 min with specific productivities of 1067 µmol/min/g, 775 µmol/min/g, and 492 µmol/min/g, volumetric productivities of 213 µM/min, 155 µM/min, and 98 µM/min, and conversion yields of 91.4%, 88.6%, and 84.3%, respectively. To date, these are the highest specific productivities reported for the bioconversion of C20- and C22-PUFAs into HFAs. KEY POINTS: • Lipoxygenase from Shewanella hanedai was identified as arachidonate 9S-lipoxygenase • Optimization led to increased production of C20 9S- and C22 11S-hydroxy fatty acids • We reported the highest specific productivities of C20- and C22-hydroxy fatty acids.


Subject(s)
Arachidonate Lipoxygenases , Fatty Acids , Fatty Acids, Unsaturated , Lipoxygenase
4.
Appl Biochem Biotechnol ; 195(2): 958-972, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36251113

ABSTRACT

A recombinant putative lipoxygenase (LOX) from Danio rerio (zebrafish), ALOX3c protein with 6-histidine tag, was purified using affinity chromatography, with a specific activity of 17.2 U mg-1 for arachidonic acid (AA). The molecular mass of the native ALOX3c was 156 kDa composed of a 78-kDa dimer by gel-filtration chromatography. The product obtained from the conversion of AA was identified as 5S-hydroxyeicosatetraenoic acid (5S-HETE) by HPLC and LC-MS/MS analyses. The specific activity and catalytic efficiency of the LOX from D. rerio for polyunsaturated fatty acids (PUFAs) followed the order AA (17.2 U mg-1, 1.96 s-1 µM-1) > docosahexaenoic acid (DHA, 13.6 U mg-1, 0.91 s-1 µM-1) > eicosapentaenoic acid (EPA, 10.5 U mg-1, 0.65 s-1 µM-1) and these values for AA were the highest among the 5S-LOXs reported to date. Based on identified products and substrate specificity, the enzyme is an AA 5S-LOX. The enzyme exhibited the maximal activity at pH 8.0 and 20 °C with 0.1 mM Zn2+ in the presence of 10 mM cysteine. Under these reaction conditions, 6.88 U mL-1 D. rerio 5S-LOX converted 1.0 mM of AA, EPA, and DHA to 0.91 mM 5S-HETE, 0.72 mM 5S-hydroxyeicosapentaenoic acid (5S-HEPE), and 0.68 mM 7S-hydroxydocosahexaenoic acid (7S-HDHA) in 25, 30, and 25 min, corresponding to molar conversion rates of 91, 72, and 68% and productivities of 2.18, 1.44, and 1.63 mM h-1, respectively. To the best of our knowledge, this study is the first to describe the bioconversion into 5S-HETE, 5S-HEPE, and 7S-HDHA for the application of biotechnological production.


Subject(s)
Arachidonate Lipoxygenases , Zebrafish , Animals , Zebrafish/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Fatty Acids, Unsaturated , Arachidonic Acid/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Docosahexaenoic Acids , Arachidonate 15-Lipoxygenase
5.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: mdl-36010555

ABSTRACT

Endothelial cells regulate vascular homeostasis through the secretion of various paracrine molecules, including bioactive lipids, but little is known regarding the enzymes responsible for generating these lipids under either physiological or pathophysiological conditions. Arachidonate lipoxygenase (ALOX) expression was therefore investigated in confluent and nonconfluent EA.h926 endothelial cells, which represent the normal quiescent and proliferative states, respectively. mRNAs for ALOX15, ALOX15B, and ALOXE3 were detected in EA.hy926 cells, with the highest levels present in confluent cells compared to nonconfluent cells. In contrast, ALOX5, ALOX12, and ALOX12B mRNAs were not detected. At the protein level, only ALOX15B and ALOXE3 were detected but only in confluent cells. ALOXE3 was also observed in confluent human umbilical artery endothelial cells (HUAEC), indicating that its expression, although previously unreported, may be a general feature of endothelial cells. Exposure to laminar flow further increased ALOXE3 levels in EA.hy926 cells and HUAECs. The evidence obtained in this study indicates that proliferative status and shear stress are both important factors that mediate endothelial ALOX gene expression. The presence of ALOX15B and ALOXE3 exclusively in quiescent human endothelial cells suggests their activity likely contributes to the maintenance of a healthy endothelium.


Subject(s)
Arachidonate Lipoxygenases , Endothelial Cells , Arachidonate Lipoxygenases/metabolism , Cell Line , Endothelial Cells/metabolism , Endothelium , Humans , Lipids , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Eur J Nutr ; 61(8): 4059-4075, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35804267

ABSTRACT

PURPOSE: Ferroptosis is a form of regulated cell death that has the potential to be targeted as a cancer therapeutic strategy. But cancer cells have a wide range of sensitivities to ferroptosis, which limits its therapeutic potential. Accumulation of lipid peroxides determines the occurrence of ferroptosis. However, the type of lipid involved in peroxidation and the mechanism of lipid peroxide accumulation are less studied. METHODS: The effects of fatty acids (10 µM) with different carbon chain length and unsaturation on ferroptosis were evaluated by MTT and LDH release assay in cell lines derived from prostate cancer (PC3, 22RV1, DU145 and LNCaP), colorectal cancer (HT-29), cervical cancer (HeLa) and liver cancer (HepG2). Inhibitors of apoptosis, necroptosis, autophagy and ferroptosis were used to determine the type of cell death. Then the regulation of reactive oxygen species (ROS) and lipid peroxidation by docosahexaenoic acid (DHA) was measured by HPLC-MS and flow cytometry. The avtive form of DHA was determined by siRNA mediated gene silencing. The role of lipoxygenases was checked by inhibitors and gene silencing. Finally, the effect of DHA on ferroptosis-mediated tumor killing was verified in xenografts. RESULTS: The sensitivity of ferroptosis was positively correlated with the unsaturation of exogenously added fatty acid. DHA (22:6 n-3) sensitized cancer cells to ferroptosis-inducing reagents (FINs) at the highest level in vitro and in vivo. In this process, DHA increased ROS accumulation, lipid peroxidation and protein oxidation independent of its membrane receptor, GPR120. Inhibition of long chain fatty acid-CoA ligases and lysophosphatidylcholine acyltransferases didn't affect the role of DHA. DHA-involved ferroptosis can be induced in both arachidonate lipoxygenase 5 (ALOX5) negative and positive cells. Down regulation of ALOX5 inhibited ferroptosis, while overexpression of ALOX5 promoted ferroptosis. CONCLUSION: DHA can effectively promote ferroptosis-mediated tumor killing by increasing intracellular lipid peroxidation. Both ALOX5 dependent and independent pathways are involved in DHA-FIN induced ferroptosis. And during this process, free DHA plays an important role.


Subject(s)
Docosahexaenoic Acids , Neoplasms , Male , Humans , Docosahexaenoic Acids/pharmacology , Reactive Oxygen Species/metabolism , Lipid Peroxides , Lipoxygenase/metabolism , Lipoxygenase/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Lysophosphatidylcholines/pharmacology , Cell Line, Tumor , Cell Death , Lipid Peroxidation , Lipoxygenases/metabolism , Arachidonate Lipoxygenases/metabolism , Arachidonate Lipoxygenases/pharmacology , Acyltransferases/metabolism , Acyltransferases/pharmacology , Carbon , Coenzyme A/metabolism , Coenzyme A/pharmacology
7.
Biotechnol Lett ; 44(9): 1027-1036, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35834094

ABSTRACT

PURPOSE: Peroxidation and reduction of 11S- and 13S-positions on C20 and C22 polyunsaturated fatty acids (PUFAs) by Escherichia coli expressing highly active arachidonate (ARA) 11S-lipoxygenase (11S-LOX) from Enhygromyxa salina with the reducing agent cysteine. RESULTS: The specific activity and catalytic efficiency of ARA 11S-LOX from E. salina were 4.1- and 91-fold higher than those of only reported ARA 11S-LOX from Myxococcus xanthus, respectively. The hydroxy fatty acids (HFAs) obtained by the biotransformation of ARA, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexanoic acid (DHA) by Escherichia coli expressing 11S-LOX from E. salina in the presence of cysteine were identified as 11S-hydroxyeicosatetraenoic acid (11S-HETE), 11S-hydroxyeicosapentaenoic acid (11S-HEPE), 13S-hydroxydocosapentaenoic acid (13S-HDPA), and 13S-hydroxydocosahexaenoic acid (13S-HDHA), respectively. The recombinant cells converted 3 mM of ARA, EPA, DPA, and DHA into 2.9 mM of 11S-HETE, 2.4 mM 11S-HEPE, 1. 9 mM 13S-HDPA, and 2.2 mM 13S-HDHA in 60, 80, 120, and 120 min, corresponding to productivities of 72.5, 40.4, 18.5, and 22.4 µM min-1 and conversion yields of 96.7, 80.0, 62.3, and 74.6%, respectively. CONCLUSIONS: We report the highest concentrations, conversion yields, and productivities of 11S- and 13S-hydroxy fatty acids from C20- and C22-PUFAs achieved via E. coli expressing highly active E. salina 11S-LOX.


Subject(s)
Escherichia coli , Lipoxygenase , Arachidonate Lipoxygenases/metabolism , Biotransformation , Cysteine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acids , Fatty Acids, Unsaturated/metabolism , Hydroxyeicosatetraenoic Acids , Lipoxygenase/metabolism , Myxococcales
8.
Article in English | MEDLINE | ID: mdl-34902567

ABSTRACT

Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second­oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first­oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.


Subject(s)
Arachidonate Lipoxygenases
9.
Prostaglandins Other Lipid Mediat ; 158: 106609, 2022 02.
Article in English | MEDLINE | ID: mdl-34954219

ABSTRACT

The arachidonic acid (AA) metabolism pathways play a key role in immunological response and inflammation diseases, such as asthma, etc. AA in cell membranes can be metabolized by lipoxygenases (LOXs) to a screen of bioactive substances that include leukotrienes (LTs), lipoxins (LXs), and eicosatetraenoic acids (ETEs), which are considered closely related to the pathophysiology of respiratory allergic disease. Studies also verified that drugs regulating AA LOXs pathway have better rehabilitative intervention for asthma. This review aims to summarize the physiological and pathophysiological importance of AA LOXs metabolism pathways in asthma and to discuss its prospects of therapeutic strategies.


Subject(s)
Asthma , Lipoxins , Arachidonate 5-Lipoxygenase , Arachidonate Lipoxygenases , Asthma/drug therapy , Humans , Leukotrienes , Lipoxygenases
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158806, 2020 12.
Article in English | MEDLINE | ID: mdl-32841762

ABSTRACT

Lipoxygenases (ALOX) are lipid peroxidizing enzymes that catalyze the biosynthesis of pro- and anti-inflammatory lipid mediators and have been implicated in (patho-)physiological processes. In humans, six functional ALOX isoforms exist and their arachidonic acid oxygenation products have been characterized. Products include leukotrienes and lipoxins which are involved in the regulation of inflammation and resolution. Oxygenation of n3-polyunsaturated fatty acids gives rise to specialized pro-resolving mediators, e.g. resolvins. However, the catalytic activity of different ALOX isoforms can lead to a multitude of potentially bioactive products. Here, we characterized the patterns of oxygenation products formed by human recombinant ALOX5, ALOX15, ALOX15B and ALOX12 from eicosapentaenoic acid (EPA) and its 18-hydroxy derivative 18-HEPE with particular emphasis on double and triple oxygenation products. ALOX15 and ALOX5 formed a complex mixture of various double oxygenation products from EPA, which include 5,15-diHEPE and various 8,15-diHEPE isomers. Their biosynthetic mechanisms were explored using heavy oxygen isotopes (H218O, 18O2 gas) and three catalytic activities contributed to product formation: i) fatty acid oxygenase activity, ii) leukotriene synthase activity, iii) lipohydroperoxidase activity. For ALOX15B and ALOX12 more specific product patterns were identified, which was also the case when these enzymes reacted in concert with ALOX5. Several double oxygenated compounds were formed from 18-HEPE by ALOX5, ALOX15B and ALOX12 including previously identified resolvins (RvE2, RvE3), while formation of triple oxygenation products, e.g. 5,17,18-triHEPE, required ALOX5. Taken together our data show that EPA can be converted by human ALOX isoforms to a large number of secondary oxygenation products, which might exhibit bioactivity.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Eicosapentaenoic Acid/metabolism , Oxygen/metabolism , Eicosapentaenoic Acid/analogs & derivatives , Humans , Hydroxylation , Protein Isoforms/metabolism , Recombinant Proteins/metabolism
11.
Phys Chem Chem Phys ; 22(28): 16013-16022, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32632422

ABSTRACT

Lipoxygenases are non-heme iron containing enzymes that catalyze oxygenation of poly-unsaturated fatty acids in different animal and plant species with extremely high regio- and stereospecificity. Nature employs 8-lipoxygenase to produce 8R-hydroperoxide from the oxygenation of arachidonic acid. A single-point L434F mutation of 8-lipoxygenase alters the regio- and stereospecificity of the final products, with a product ratio of 66 : 34 for 8R- and 12S-hydroperoxide, respectively. A molecular level explanation of this flipped regiospecificity is presented in this work on the basis of molecular dynamics simulations and transition network analysis of oxygen migration in the protein matrix. Phe434 is shown to exist in two conformations, the so-called open and closed conformations. In the closed conformation, the phenyl group of Phe434 shields the C8 site of the substrate, thereby preventing access of the oxygen molecule to this site, which leads to a quenching of the 8R-product. On the other hand, both closed and open conformations of Phe434 allow the oxygen molecule to approach the pro-S face of the C12 site of the substrate, which enhances the propensity of the 12S-hydroperoxide.


Subject(s)
Arachidonate Lipoxygenases/genetics , Animals , Arachidonate Lipoxygenases/chemistry , Arachidonate Lipoxygenases/metabolism , Crystallography, X-Ray , Molecular Dynamics Simulation , Mutation , Protein Conformation
12.
J Phys Chem B ; 123(50): 10605-10621, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31775504

ABSTRACT

Lipoxygenases (lox's) are a group of non-heme iron containing enzymes that catalyze oxygenation of polyunsaturated fatty acids with precise regio- and stereoselectivities. The origin of regio- and stereospecific catalysis by 8-lox is explored in its wild-type (wt) form and in three mutants (Arg185Ala, Ala592Met, and Ala623His). The catalytic action of this enzyme progresses in two steps, namely, hydrogen abstraction from one double allylic carbon atom of substrate followed by oxygen insertion at the resulting prochiral carbon radical of the substrate. It is shown that the positional specificity of the hydrogen abstraction is a result of conformational dynamics of the bound substrate. While the C10 atom of the substrate is found to be the most probable site of hydrogen abstraction in the wt-lox, hydrogen abstraction from C13 is more favorable in the mutants. The present study discovers the presence of an interconnected network of a three-channel migration pathway operating in the protein matrix for efficient oxygen transport. Each migration channel is bestowed with a pocket at the peripheral region of protein as an oxygen access site, which transfers the oxygen to the active site through a well-connected migration path on a time scale of a few hundred picoseconds. By a careful geometric analysis of the oxygen pockets near the substrate binding cleft, the present study identifies the launching sites for oxygenation at the prochiral carbon centers C8, C11, C12, and C15 and the stereochemistry (R/S) of the corresponding products. It is found that the dominating 8R product in the wt-lox is due to the presence of the aromatic ring pair of Tyr181 and Phe173 acting as a gatekeeper for efficient delivery of oxygen at the pro-R face of C8. The change in the stereochemistry of the products in mutants is explained in terms of dynamic interactions between substrate and the surrounding residues.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Biocatalysis , Molecular Dynamics Simulation , Arachidonate Lipoxygenases/chemistry , Arachidonate Lipoxygenases/genetics , Mutation , Protein Conformation , Stereoisomerism , Substrate Specificity
13.
Biochem Biophys Res Commun ; 519(1): 81-85, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31477267

ABSTRACT

Lipoxygenases (LOXs) are dioxygenases that catalyze the oxygenation of polyunsaturated fatty acids to hydroperoxyl derivates. These products are precursors for different lipid mediators which are associated with pathogenesis of various diseases such as asthma, atherosclerosis and cancer. Several LOXs suffer from substrate inhibition, a potential regulatory mechanism, yet it is unclear what is the cause of this phenomenon. One such enzyme is the coral 11R-LOX which displays a significant decrease in turnover rate at arachidonic acid concentrations above 30 µM. In this report, site-directed mutagenesis and inhibition assays were employed to shed light on the mechanism of substrate inhibition in 11R-LOX. We found that introduction of a positive charge to the active site entrance with Gly188Arg substitution completely eliminates the slow-down at higher substrate concentrations. Inhibition of 11R-LOX by its catalysis product, 11(R)-hydroperoxyeicosatetraenoic acid, suggests an uncompetitive mechanism. We reason that substrate inhibition in 11R-LOX is due to additional fatty acid binding by the enzyme:substrate complex at an allosteric site situated in the very vicinity of the active site entrance.


Subject(s)
Arachidonate Lipoxygenases/antagonists & inhibitors , Arachidonic Acids/pharmacology , Arginine/genetics , Enzyme Inhibitors/pharmacology , Glycine/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Arachidonate Lipoxygenases/genetics , Arachidonate Lipoxygenases/metabolism , Humans , Mutagenesis, Site-Directed , Sequence Alignment , Substrate Specificity/drug effects
14.
Poult Sci ; 98(10): 4346-4358, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31287882

ABSTRACT

Cytochrome P-450 2C45 (CYP2C45) is the most highly expressed cytochrome P-450 isoform in chicken liver, and may play an important role in avian liver biology. However, information regarding the function of CYP2C45 in fatty liver is generally limited. The aim of this study was to investigate the role of CYP2C45 during the development of goose fatty liver. Our result indicated that the transcription of CYP2C45, together with PK and ALOX5, was increased in goose liver upon overfeeding for 19 D (P < 0.05). In goose primary hepatocytes, CYP2C45 RNA expression was also upgraded by the treatment with various chemicals like insulin, the fatty acids, and PPAR agonists (P < 0.05). We also found that both CYP2C45 overexpression and troglitazone treatment could increase the expression of pyruvate kinase (PK) and arachidonate 5-lipoxygenase (ALOX5), and furthermore, showed that the up-regulation of PK and ALOX5 induced by troglitazone could be suppressed by small interfering RNAs targeting CYP2C45 (P < 0.05). These findings suggest that fatty acids treatment and the overfeeding can induce the up-regulation of CYP2C45 expression possibly via PPARγ and that the induction of PK and ALOX5 in goose fatty liver is at least partially attributed to fatty acid-induced expression of CYP2C45. Thus, our data provides an insight into the mechanism by which glycolysis and arachidonic acid metabolism are modulated in goose fatty liver.


Subject(s)
Arachidonate Lipoxygenases/genetics , Avian Proteins/genetics , Fatty Acids/metabolism , Fatty Liver/veterinary , Geese , Poultry Diseases/genetics , Pyruvate Kinase/genetics , Animals , Arachidonate Lipoxygenases/metabolism , Avian Proteins/metabolism , Base Sequence , Cytochrome P-450 Enzyme System/genetics , Fatty Liver/genetics , Male , PPAR gamma/genetics , Pyruvate Kinase/metabolism , Signal Transduction/genetics
15.
Biotechnol Lett ; 41(4-5): 575-582, 2019 May.
Article in English | MEDLINE | ID: mdl-30825045

ABSTRACT

OBJECTIVE: To quantitatively hydroxylate 8S- and 10S-positions on polyunsaturated fatty acids by recombinant Escherichia coli cells expressing mouse arachidonate 8S-lipoxygenase (8S-LOX). RESULTS: Hydroxylated products gained from the conversion of arachidonic acid (20:4Δ5Z,8Z,11Z,14Z, AA), eicosapentanoic acid (20:5Δ5Z,8Z,11Z,14Z,17Z, EPA), and (22:6Δ4Z,7Z,10Z,13Z,16Z,19Z, DHA) by recombinant E. coli cells containing 8S-LOX from mouse were identified as 8S-hydroxy-5,9,11,14(Z,E,Z,Z)-eicosatetranoic acid (8S-HETE), 8S-hydroxy-5,9,11,14,17(Z,E,Z,Z,Z)-eicosapentanoic acid (8S-HEPE), and 10S-hydroxy-4,8,12,14,16,19(Z,E,Z,Z,Z,Z)-docosahexaenoic acid (10S-HDoHE), respectively. Under the optimal hydroxylation conditions of pH 7.5, 30 °C, 5% (v/v) ethanol, 15 g cells l-1, and 5 mM substrate, AA, EPA, and DHA were hydroxylated into 4.37 mM 8S-HETE, 3.77 mM 8S-HEPE, and 3.13 mM 10S-HDoHE for 60, 90, and 60 min, with 87, 75, and 63% molar conversions, respectively. CONCLUSION: To the best of our knowledge, this is the first quantitatively biotechnological production of 8S-HETE, 8S-HEPE, and 10S-HDoHE.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Escherichia coli/metabolism , Fatty Acids, Unsaturated/metabolism , Recombinant Proteins/metabolism , Animals , Arachidonate Lipoxygenases/genetics , Escherichia coli/genetics , Hydrogen-Ion Concentration , Mice , Recombinant Proteins/genetics , Temperature
16.
J Lipid Res ; 59(11): 2153-2163, 2018 11.
Article in English | MEDLINE | ID: mdl-30257932

ABSTRACT

Lipoxygenases (LOXs) catalyze the dioxygenation of PUFAs to produce regio- and stereospecific oxygenated fatty acids. The identification of regio- and stereospecific LOXs is important because their specific products are involved in different physiological activities in various organisms. Bacterial LOXs are found only in some proteobacteria and cyanobacteria, and they are not stable in vitro. Here, we used C20 and C22 PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid, and docosahexaenoic acid to identify an 11S-specific LOX from the proteobacterium Myxococcus xanthus and explore its in vitro stability and activity. The activity and stability of M. xanthus ARA 11S-LOX as well as the production of 11S-hydroxyeicosatetraenoic acid from ARA were significantly increased by the addition of phosphatidylcholine, Ca2+, and coactosin-like protein (newly identified in the yeast Rhodosporidium toluroides) as stimulatory factors; in fact, LOX activity in the presence of all three factors increased approximately 3-fold. Our results indicate that these stimulatory factors can be used to increase the activity and stability of bacterial LOX and the production of bioactive hydroxy fatty acids, which can contribute to new academic research.


Subject(s)
Arachidonate Lipoxygenases/metabolism , Myxococcus xanthus/enzymology , Arachidonate Lipoxygenases/genetics , Kinetics , Mutagenesis, Site-Directed , Phosphatidylcholines/metabolism , Phylogeny
17.
Methods Enzymol ; 605: 33-49, 2018.
Article in English | MEDLINE | ID: mdl-29909831

ABSTRACT

Methods are presented for the use of the coral 8R-lipoxygenase from the Caribbean sea whip coral Plexaura homomalla as a model enzyme for structural studies of animal lipoxygenases. The 8R-lipoxygenase is remarkably stable and can be stored at 4°C for 3 months with virtually no loss of activity. In addition, an engineered "pseudo wild-type" enzyme is soluble in the absence of detergents, which helps facilitate the preparation of enzyme:substrate complexes.


Subject(s)
Anthozoa/metabolism , Arachidonate Lipoxygenases/isolation & purification , Arachidonic Acid/metabolism , Enzyme Assays/methods , Protein Domains/genetics , Animals , Arachidonate Lipoxygenases/chemistry , Arachidonate Lipoxygenases/genetics , Arachidonate Lipoxygenases/metabolism , Arachidonic Acid/chemistry , Binding Sites/genetics , Crystallography, X-Ray/methods , Escherichia coli/metabolism , Metabolic Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity/genetics
18.
Nat Commun ; 9(1): 128, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317615

ABSTRACT

Hepoxilins (HXs) and trioxilins (TrXs) are involved in physiological processes such as inflammation, insulin secretion and pain perception in human. They are metabolites of polyunsaturated fatty acids (PUFAs), including arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, formed by 12-lipoxygenase (LOX) and epoxide hydrolase (EH) expressed by mammalian cells. Here, we identify ten types of HXs and TrXs, produced by the prokaryote Myxococcus xanthus, of which six types are new, namely, HXB5, HXD3, HXE3, TrXB5, TrXD3 and TrXE3. We succeed in the biotransformation of PUFAs into eight types of HXs (>35% conversion) and TrXs (>10% conversion) by expressing M. xanthus 12-LOX or 11-LOX with or without EH in Escherichia coli. We determine 11-hydroxy-eicosatetraenoic acid, HXB3, HXB4, HXD3, TrXB3 and TrXD3 as potential peroxisome proliferator-activated receptor-γ partial agonists. These findings may facilitate physiological studies and drug development based on lipid mediators.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Fatty Acids, Unsaturated/metabolism , Myxococcus xanthus/enzymology , 8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/metabolism , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate Lipoxygenases/genetics , Arachidonate Lipoxygenases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotransformation , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Fatty Acids, Unsaturated/chemistry , Metabolic Networks and Pathways/genetics , Molecular Structure , Myxococcus xanthus/genetics
19.
J Immunol Res ; 2016: 7509653, 2016.
Article in English | MEDLINE | ID: mdl-27556049

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease, leading to progressive destruction of joints and extra-articular tissues, including organs such as liver and spleen. The purpose of this study was to compare the effects of a potential immunomodulator, natural polyphenol N-feruloylserotonin (N-f-5HT), with methotrexate (MTX), the standard in RA therapy, in the chronic phase of adjuvant-induced arthritis (AA) in male Lewis rats. The experiment included healthy controls (CO), arthritic animals (AA), AA given N-f-5HT (AA-N-f-5HT), and AA given MTX (AA-MTX). N-f-5HT did not affect the body weight change and clinical parameters until the 14th experimental day. Its positive effect was rising during the 28-day experiment, indicating a delayed onset of N-f-5HT action. Administration of either N-f-5HT or MTX caused reduction of inflammation measured as the level of CRP in plasma and the activity of LOX in the liver. mRNA transcription of TNF-α and iNOS in the liver was significantly attenuated in both MTX and N-f-5HT treated groups of arthritic rats. Interestingly, in contrast to MTX, N-f-5HT significantly lowered the level of IL-1ß in plasma and IL-1ß mRNA expression in the liver and spleen of arthritic rats. This speaks for future investigations of N-f-5HT as an agent in the treatment of RA in combination therapy with MTX.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Inflammation Mediators , Liver/drug effects , Liver/metabolism , Methotrexate/pharmacology , Serotonin/analogs & derivatives , Transcriptome , Animals , Arachidonate Lipoxygenases/genetics , Arachidonate Lipoxygenases/metabolism , Arthritis, Experimental/drug therapy , Biomarkers , C-Reactive Protein , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Male , Organ Specificity , Rats , Serotonin/pharmacology , Severity of Illness Index , Time Factors
20.
Adv Protein Chem Struct Biol ; 100: 153-85, 2015.
Article in English | MEDLINE | ID: mdl-26415844

ABSTRACT

In this chapter, we discuss the influence of an anisotropic protein environment on the reaction mechanisms of saccharopine reductase and uroporphyrinogen decarboxylase, respectively, via the use of a quantum mechanical and molecular mechanical (QM/MM) approach. In addition, we discuss the importance of selecting a suitable DFT functional to be used in a QM/MM study of a key intermediate in the mechanism of 8R-lipoxygenase, a nonheme iron enzyme. In the case of saccharopine reductase, while the enzyme utilizes a substrate-assisted catalytic pathway, it was found that only through treating the polarizing effect of the active site, via the use of an electronic embedding formalism, was agreement with experimental kinetic data obtained. Similarly, in the case of uroporphyrinogen decarboxylase, the effect of the protein environment on the catalytic mechanism was found to be such that the calculated rate-limiting barrier is in good agreement with related experimentally determined values for the first decarboxylation of the substrate. For 8R-lipoxygenase, it was found that the geometries and energies of the multicentered open-shell intermediate complexes formed during the mechanism are quite sensitive to the choice of the density functional theory method. Thus, while density functional theory has become the method of choice in QM/MM studies, care must be taken in the selection of a particular high-level method.


Subject(s)
Arachidonate Lipoxygenases/chemistry , Molecular Dynamics Simulation , Saccharopine Dehydrogenases/chemistry , Uroporphyrinogen Decarboxylase/chemistry , Animals , Anisotropy , Anthozoa/chemistry , Anthozoa/enzymology , Catalytic Domain , Humans , Kinetics , Quantum Theory , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...