Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Plant Physiol Biochem ; 211: 108664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703498

ABSTRACT

Water stress is a major cause of yield loss in peanut cultivation. Melatonin seed priming has been used to enhance stress tolerance in several crops, but not in peanut. We investigated the impact of seed priming with melatonin on the growth, development, and drought tolerance of two peanut cultivars, TUFRunner™ '511', a drought tolerant cultivar, and New Mexico Valencia A, a drought sensitive cultivar. Peanut seed priming tests using variable rates of melatonin (0-200 µM), indicated that 50 µM of melatonin resulted in more uniform seed germination and improved seedling growth in both cultivars under non stress conditions. Seed priming with melatonin also promoted vegetative growth, as evidenced by higher whole-plant transpiration, net CO2 assimilation, and root water uptake under both well-watered and water stress conditions in both cultivars. Higher antioxidant activity and protective osmolyte accumulation, lower reactive oxygen species accumulation and membrane damage were observed in primed compared with non-primed plants. Seed priming with melatonin induced a growth promoting effect that was more evident under well-watered conditions for TUFRunnner™ '511', whereas for New Mexico Valencia A, major differences in physiological responses were observed under water stress conditions. New Mexico Valencia A primed plants exhibited a more sensitized stress response, with faster down-regulation of photosynthesis and transpiration compared with non-primed plants. The results demonstrate that melatonin seed priming has significant potential to improve early establishment and promote growth of peanut under optimal conditions, while also improve stress tolerance during water stress.


Subject(s)
Arachis , Dehydration , Melatonin , Seeds , Melatonin/pharmacology , Melatonin/metabolism , Arachis/drug effects , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Seeds/drug effects , Seeds/growth & development , Water/metabolism , Germination/drug effects , Antioxidants/metabolism , Droughts , Photosynthesis/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/growth & development
2.
PLoS One ; 19(5): e0302158, 2024.
Article in English | MEDLINE | ID: mdl-38696404

ABSTRACT

High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.


Subject(s)
Arachis , Phaseolus , Phenotype , Phaseolus/genetics , Phaseolus/anatomy & histology , Phaseolus/growth & development , Arachis/genetics , Arachis/growth & development , Algorithms , Seed Bank , Machine Learning , Artificial Intelligence
3.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745279

ABSTRACT

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Subject(s)
Arachis , Droughts , Stress, Physiological , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Proline/metabolism , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/physiology , Soil Microbiology , Osmotic Pressure , Betaine/metabolism , Indoleacetic Acids/metabolism , Salicylic Acid/metabolism , Acinetobacter/metabolism , Acinetobacter/growth & development , Acinetobacter/physiology , Hydrogen Cyanide/metabolism , Trehalose/metabolism
4.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723970

ABSTRACT

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Subject(s)
Arachis , Charcoal , Nitrogen Fixation , Plant Roots , Soil , Arachis/growth & development , Soil/chemistry , Soil Microbiology , Fertilizers , Manure
5.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
6.
Sci Data ; 11(1): 364, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605113

ABSTRACT

Peanut (Arachis hypogaea) showcases geocarpic behavior, transitioning from aerial flowering to subterranean seed development. We recently obtained an atavistic variant of this species, capable of producing aerial and subterranean pods on a single plant. Notably, although these pod types share similar vigor levels, they exhibit distinct differences in their physical aspects, such as pod size, color, and shell thickness. We constructed 63 RNA-sequencing datasets, comprising three biological replicates for each of 21 distinct tissues spanning six developmental stages for both pod types, providing a rich tapestry of the pod development process. This comprehensive analysis yielded an impressive 409.36 Gb of clean bases, facilitating the detection of 42,401 expressed genes. By comparing the transcriptomic data of the aerial and subterranean pods, we identified many differentially expressed genes (DEGs), highlighting their distinct developmental pathways. By providing a detailed workflow from the initial sampling to the final DEGs, this study serves as an important resource, paving the way for future research into peanut pod development and aiding transcriptome-based expression profiling and candidate gene identification.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Transcriptome , Arachis/genetics , Arachis/growth & development , Gene Expression Profiling , Seeds/genetics , Seeds/growth & development
7.
BMC Microbiol ; 22(1): 14, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996375

ABSTRACT

BACKGROUND: Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS: The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION: Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Subject(s)
Agriculture/methods , Arachis/growth & development , Microbiota , Nutrients/metabolism , Zea mays/growth & development , Arachis/metabolism , Arachis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , China , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Enzymes/analysis , Enzymes/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Nutrients/analysis , Rhizosphere , Soil/chemistry , Soil Microbiology , Zea mays/metabolism , Zea mays/microbiology
8.
BMC Microbiol ; 21(1): 299, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34715786

ABSTRACT

BACKGROUND: Peanut (Arachis hypogaea L.) is an important oil and economic crop. Calcium modulates plants in response to abiotic stresses and improves plant resistance to pathogens. Enrichment of beneficial microorganisms in the rhizosphere is associated with plant disease resistance and soil development. The purpose of this study was to analyze the differences in peanut rhizosphere microbial community structure between the calcium treatment and the control during two growth stages and to explain why calcium application could improve the resistance of peanuts to soil-borne pathogens. RESULTS: The 16S rDNA amplicon sequencing of rhizosphere microbiome showed that calcium application significantly enriched Serratia marcescens and other three dominant strains at the seedling stage. At the pod filling stage, ten dominant stains such as Sphingomonas changbaiensis and Novosphingobium panipatense were enriched by calcium. Serratia marcescens aseptic fermentation filtrate was mixed with PDA medium and inoculated with the main soil-borne pathogens in the seedling stage, which could inhibit the growth of Fusarium solani and Aspergillus flavus. The aseptic fermentation filtrate of Novosphingobium panipatense was mixed with PDA medium and inoculated with the main soil-borne pathogens in the pod filling stage, which could inhibit the growth of Sclerotium rolfsii and Leptosphaerulina arachidicola. CONCLUSIONS: Calcium application increases the resistance of peanuts to soil-borne pathogens by enriching them with specific dominant bacteria.


Subject(s)
Arachis/drug effects , Calcium/pharmacology , Disease Resistance/drug effects , Plant Diseases/prevention & control , Probiotics/pharmacology , Rhizosphere , Antibiosis , Arachis/growth & development , Arachis/microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Fruit/drug effects , Fruit/growth & development , Fruit/microbiology , Microbiota/drug effects , Plant Diseases/microbiology , Probiotics/metabolism , RNA, Ribosomal, 16S/genetics , Seedlings/drug effects , Seedlings/growth & development , Seedlings/microbiology , Soil/chemistry , Soil Microbiology
9.
Sci Rep ; 11(1): 14832, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290277

ABSTRACT

A well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


Subject(s)
Arachis/anatomy & histology , Arachis/microbiology , Mycorrhizae/physiology , Nutritional Physiological Phenomena/physiology , Photosynthesis/physiology , Plant Physiological Phenomena , Arachis/growth & development , Arachis/metabolism , Biomass , Soil Microbiology
10.
PLoS One ; 16(6): e0252393, 2021.
Article in English | MEDLINE | ID: mdl-34111142

ABSTRACT

Peanut (Arachis hypogea L.) is an important nut crop extensively grown in rainfed regions of Pakistan. The crop requires low inputs; thus, could grow successfully under diverse environmental conditions. Due to pegging ability, peanut grows aggressively in sandy and sandy-loam soils. However, it has not introduced to Thal region of southern Punjab, Pakistan. A two-year field experiment was conducted to optimize sowing dates for two peanut genotypes ('BARI-2016' and 'NO-334') in Thal region (Layyah). Similarly, a yield trial was conducted at Chakwal where both genotypes are extensively grown. Five sowing dates (10th April, 1st May, 20th May, 10th June and 30th June) were included in the study. The highest seed yield was obtained with early sown crop (10th April) during both years. Pod formation reduced with increasing atmospheric temperature and no pods were formed on the plants sown on 30th June. Decreased pod formation seemed a major reason for low yield in late-sown crop. The highest yield was observed for the crop sown on 10th April, which was decreased by 40% for the crop sown on 1st May. Genotype 'BARI-2016' performed better for seed yield at both locations compared with 'NO-334'. The results suggested that genotype 'BARI-2016' is more adaptive to arid and semi-arid condition under rainfed or irrigated conditions. Sowing peanut at optimum time would increase seed yield in arid and semi-arid regions. Nonetheless, 'BARI-2016' can be grown under rainfed and irrigated conditions successfully.


Subject(s)
Agriculture/methods , Arachis/growth & development , Arachis/genetics , Genotype , Droughts , Tropical Climate
11.
Microbiol Res ; 249: 126774, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33962316

ABSTRACT

In agroecosystems, drought stress severely threatens crops development. Although potassium (K) is required in amounts by crops under drought stress, the mobilization and availablity of K are limited by the soil water status. Arbuscular mycorrhizal (AM) fungi can form mutualistic associations with most crops and play direct or indirect roles in the host drought resistance. Considering that the glomalin generated by living AM fungal hyphae can sequester multiple minerals, however, the function of mineral-sequestering glomalin in the crop drought resistance remains unclear. In this study, peanuts cultivated in the sterilized soil with a history of AM fungi inoculation showed significantly enhanced leaf K accumulation, drought resistance and pod yield under drought stress. Through the collection of different types of mineral-sequestering glomalin from living AM fungal hyphae, the peanut drought resistance was improved only when K-sequestering glomalin was added. Moreover, we found that peanut root exudates could prime the dissociation of glomalin-bound K and further satisfy the K requirement of crops. Our study is the first report that K-sequestering glomalin could improve drought performance and peanut pod yield, and it helps us to understand the ecological importance of improving AM symbiosis to face agricultural challenges.


Subject(s)
Arachis/microbiology , Arachis/physiology , Fungal Proteins/metabolism , Fungi/metabolism , Glycoproteins/metabolism , Mycorrhizae/metabolism , Potassium/metabolism , Arachis/growth & development , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Droughts , Hyphae/metabolism , Plant Leaves/metabolism , Potassium/pharmacology , Soil Microbiology , Stress, Physiological , Symbiosis
12.
World J Microbiol Biotechnol ; 37(7): 109, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34057641

ABSTRACT

Phosphate solubilizing microorganisms widely exist in plant rhizosphere soil, but report about the P solubilization and multiple growth-promoting properties of rare actinomycetes are scarce. In this paper, a phosphate solubilizing Tsukamurella tyrosinosolvens P9 strain was isolated from the rhizosphere soil of tea plants. Phosphorus-dissolving abilities of this strain were different under different carbon and nitrogen sources, the soluble phosphorus content was 442.41 mg/L with glucose and potassium nitrate as nutrient sources. The secretion of various organic acids, such as lactic acid, maleic acid, oxalic acid, etc., was the main mechanism for P solubilization and pH value in culture was very significant negative correlation with soluble P content. In addition, this strain had multiple growth-promoting characteristics with 37.26 µg/mL of IAA and 72.01% of siderophore relative content. Under pot experiments, P9 strain improved obviously the growth of peanut seedlings. The bacterial communities of peanut rhizoshpere soil were assessed after inoculated with P9 strain. It showed that there was no significant difference in alpha-diversity indices between the inoculation and control groups, but the P9 treatment group changed the composition of bacterial communities, which increased the relative abundance of beneficial and functional microbes, which relative abundances of Chitinophagaceae at the family level, and of Flavihumibacter, Ramlibacter and Microvirga at the genus level, were all siginificant increased. Specially, Tsukamurella tyrosinosolvens were only detected in the rhizosphere of the inoculated group. This study not only founded growth-promoting properties of T. tyrosinosolvens P9 strain and its possible phosphate solublizing mechanism, but also expected to afford an excellent strain resource in biological fertilizers.


Subject(s)
Actinobacteria/classification , Arachis/growth & development , Calcium Phosphates/chemistry , Actinobacteria/isolation & purification , Actinobacteria/physiology , Arachis/microbiology , Carbon/metabolism , Gas Chromatography-Mass Spectrometry , Glucose/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Phylogeny , Potassium Compounds/metabolism , Rhizosphere , Soil Microbiology
13.
PLoS One ; 16(5): e0250293, 2021.
Article in English | MEDLINE | ID: mdl-33939737

ABSTRACT

The scarcity of information on the maturation physiology of the peanut seed (Arachis hypogaea L.; Virgínia group) makes harvesting high quality seeds a challenge for the seed industry. During two consecutive crop seasons, we studied the acquisition of physiological quality of peanut seeds during maturation in tropical conditions. We bring new insights about the period of late maturation of seeds and the influence of the maternal environment on physiological quality. We monitored water content, dry weight, ability of germination, desiccation tolerance, vigor and longevity. In addition, we monitored temperature and precipitation throughout plant growth. We demonstrate that the physiological quality of peanut seeds is acquired during development, with a maximum between 57 and 76 days after flowering in the late stage of maturation. This final period represents about 25% of the development, considered the best time to harvest peanut seeds with the highest quality. Our findings also support the idea that the adequate proportion of rainfall and thermal sum in the maternal environment are factors that favor the acquisition of peanut seed longevity.


Subject(s)
Arachis/growth & development , Crop Production/methods , Nuts/standards , Acclimatization , Arachis/physiology , Environment , Germination , Nuts/growth & development , Nuts/physiology , Osmotic Pressure
14.
Gene ; 791: 145722, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34010708

ABSTRACT

Plant height is a fundamentally crucial agronomic trait to control crop growth and high yield cultivation. Several studies have been conducted on the understanding ofmolecular genetic bases of plant height in model plants and crops. However, the molecular mechanism underlying peanut plant height development is stilluncertain. In the present study, we created a peanut mutant library by fast neutron irradiation using peanut variety SH13 and identified a semi-dwarf mutant 1 (sdm1). At 84 DAP (days after planting), the main stem of sdm1 was only about 62% of SH13. The internode length of sdm1 hydroponic seedlings was found significantly shorter than that of SH13 at 14 DAP. In addition, the foliar spraying of exogenous IAA could partially restore the semi-dwarf phenotype of sdm1. Transcriptome data indicated that the differentially expressed genes (DEGs) between sdm1 and SH13 significantly enriched in diterpenoid biosynthesis, alpha-linolenic acid metabolism, brassinosteroid biosynthesis, tryptophan metabolism and plant hormone signal transduction. The expression trend of most of the genes involved in IAA and JA pathway showed significantly down- and up- regulation, which may be one of the key factors of the sdm1 semi-dwarf phenotype. Moreover, several transcription factorsand cell wall relatedgenes were expressed differentially between sdm1 and SH13. Conclusively, this research work not only provided important clues to unveil the molecular mechanism of peanut plant height regulation, but also presented basic materials for breeding peanut cultivars with ideal plant height.


Subject(s)
Arachis/growth & development , Arachis/genetics , Gene Expression Regulation, Plant/genetics , Biometry/methods , Fabaceae/genetics , Fabaceae/growth & development , Gene Expression/genetics , Gene Expression Profiling/methods , Genomics/methods , Phenotype , Plant Breeding/methods , Plant Growth Regulators/metabolism , RNA-Seq/methods , Seedlings/genetics , Transcriptome/genetics
15.
BMC Plant Biol ; 21(1): 186, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33874903

ABSTRACT

BACKGROUND: Time-to-maturation (TTM) is an important trait contributing to adaptability, yield and quality in peanut (Arachis hypogaea L). Virginia market-type peanut belongs to the late-maturing A. hypogaea subspecies with considerable variation in TTM within this market type. Consequently, planting and harvesting schedule of peanut cultivars, including Virginia market-type, need to be optimized to maximize yield and grade. Little is known regarding the genetic control of TTM in peanut due to the challenge of phenotyping and limited DNA polymorphism. Here, we investigated the genetic control of TTM within the Virginia market-type peanut using a SNP-based high-density genetic map. A recombinant inbred line (RIL) population, derived from a cross between two Virginia-type cultivars 'Hanoch' and 'Harari' with contrasting TTM (12-15 days on multi-years observations), was phenotyped in the field for 2 years following a randomized complete block design. TTM was estimated by maturity index (MI). Other agronomic traits like harvest index (HI), branching habit (BH) and shelling percentage (SP) were recorded as well. RESULTS: MI was highly segregated in the population, with 13.3-70.9% and 28.4-80.2% in years 2018 and 2019. The constructed genetic map included 1833 SNP markers distributed on 24 linkage groups, covering a total map distance of 1773.5 cM corresponding to 20 chromosomes on the tetraploid peanut genome with 1.6 cM mean distance between the adjacent markers. Thirty QTL were identified for all measured traits. Among the four QTL regions for MI, two consistent QTL regions (qMIA04a,b and qMIB03a,b) were identified on chromosomes A04 (118680323-125,599,371; 6.9Mbp) and B03 (2839591-4,674,238; 1.8Mbp), with LOD values of 5.33-6.45 and 5-5.35 which explained phenotypic variation of 9.9-11.9% and 9.3-9.9%, respectively. QTL for HI were found to share the same loci as MI on chromosomes B03, B05, and B06, demonstrating the possible pleiotropic effect of HI on TTM. Significant but smaller effects on MI were detected for BH, pod yield and SP. CONCLUSIONS: This study identified consistent QTL regions conditioning TTM for Virginia market-type peanut. The information and materials generated here can be used to further develop molecular markers to select peanut idiotypes suitable for diverse growth environments.


Subject(s)
Arachis/growth & development , Arachis/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/physiology , Genetic Linkage , Phenotype
16.
PLoS One ; 16(3): e0242949, 2021.
Article in English | MEDLINE | ID: mdl-33750972

ABSTRACT

LEAFY COTYLEDON1 (LEC1) is a HAP3 subunit of CCAAT-binding transcription factor, which controls several aspects of embryo and postembryo development, including embryo morphogenesis, storage reserve accumulation and skotomorphogenesis. Herein, using the method of chromosomal walking, a 2707bp upstream sequence from the ATG initiation codon site of AhLEC1A which is a homolog of Arabidopsis LEC1 was isolated in peanut. Its transcriptional start site confirmed by 5' RACE was located at 82 nt from 5' upstream of ATG. The bioinformatics analysis revealed that there existed many tissue-specific elements and light responsive motifs in its promoter. To identify the functional region of the AhLEC1A promoter, seven plant expression vectors expressing the GUS (ß-glucuronidase) gene, driven by 5' terminal series deleted fragments of AhLEC1A promoter, were constructed and transformed into Arabidopsis. Results of GUS histochemical staining showed that the regulatory region containing 82bp of 5' UTR and 2228bp promoter could facilitate GUS to express preferentially in the embryos at different development periods of Arabidopsis. Taken together, it was inferred that the expression of AhLEC1A during seed development of peanut might be controlled positively by several seed-specific regulatory elements, as well as negatively by some other regulatory elements inhibiting its expression in other organs. Moreover, the GUS expression pattern of transgenic seedlings in darkness and in light was relevant to the light-responsive elements scattered in AhLEC1A promoter segment, implying that these light-responsive elements harbored in the AhLEC1A promoter regulate skotomorphogenesis of peanut seeds, and AhLEC1A expression was inhibited after the germinated seedlings were transferred from darkness to light.


Subject(s)
Arachis/genetics , CCAAT-Binding Factor/genetics , Plant Proteins/genetics , 5' Untranslated Regions , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arachis/growth & development , CCAAT-Binding Factor/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Gene Expression Regulation, Plant/radiation effects , Glucuronidase/genetics , Glucuronidase/metabolism , Light , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Protein Subunits/genetics , Regulatory Elements, Transcriptional/genetics , Seeds/genetics
17.
J Oleo Sci ; 70(4): 471-478, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33692242

ABSTRACT

The present study investigated the effects of harvesting time on the physicochemical properties, antioxidant activity, fatty acid composition, and phenolic compounds of peanut kernels. The moisture content (air-dried basis) of peanut kernels was determined between 4.47% (September 15, 2019) and 7.93% (October 6, 2019), whereas the oil contents changed from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). The total carotenoid, chlorophyll, and phenolic contents were low throughout the harvest, showing differences depending on the harvest time. Total phenolic content changed from 0.28 mg GAE/L (September 29, 2019) to 0.43 mg GAE/L (September 8, 2019), whereas the antioxidant activity varied from 4.42% (August 25, 2019) to 4.70% (September 1, 2019). The dominant fatty acids were palmitic, oleic, and linoleic acids, depending on the harvest time, followed by stearic, behenic, arachidic, and linolenic acids. The (+)-catechin content ranged from 2.17 mg/L (September 8, 2019) to 5.15 mg/L (September 1, 2019), whereas 1,2-dihydroxybenzene content changed between 2.67 mg/L (October 6, 2019) and 5.85 mg/L (September 29, 2019). The phenolic compound content fluctuated depending on the harvest time. The results showed that peanut kernel and oil had distinctive phenolic profiles and fatty acid contents. The findings of the present study may provide information for the best time to harvest peanut to achieve its maximum health benefits.


Subject(s)
Arachis/chemistry , Crops, Agricultural/chemistry , Fatty Acids/analysis , Phenols/analysis , Plant Oils/chemistry , Seasons , Antioxidants/analysis , Arachis/growth & development , Carotenoids/analysis , Catechin/analysis , Chemical Phenomena , Chlorophyll/analysis , Crops, Agricultural/growth & development
18.
PLoS One ; 16(3): e0247931, 2021.
Article in English | MEDLINE | ID: mdl-33657159

ABSTRACT

Palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster cv. Marandu] is widely used in Brazil and is typically managed with little or no N fertilizer, which often leads to pasture decline in the long-term. The current relationship between beef price and fertilizer cost in Brazil does not favor fertilizer use in pastures. Legume inclusion is an alternative to adding fertilizer N, but often legumes do not reach a significant proportion (> 30%) in pasture botanical composition. This study evaluated herbage responses to N inputs and pasture species composition, under intermittent stocking. Treatments included palisadegrass-forage peanut (Arachis pintoi Krapov. & W.C. Greg. cv. Amarillo) mixture (mixed), unfertilized palisadegrass (control), and palisadegrass fertilized with 150 kg N ha-1 yr-1 (fertilized). Treatments were applied over two rainy seasons with five growth cycle (GC) evaluations each season. Response variables included herbage biomass, herbage accumulation, morphological components, total aboveground N of forage peanut (TAGNFP), and contribution of biological N2 fixation (BNF). Herbage biomass was greater for fertilized palisadegrass [5850 kg dry matter (DM) ha-1] than for the palisadegrass-forage peanut mixture (3940 kg DM ha-1), while the unfertilized palisadegrass (4400 kg DM ha-1) did not differ from the mixed pasture. Nitrogen fertilizer increased leaf mass of palisadegrass (2490 kg DM ha-1) compared with the control and mixed treatments (1700 and 1310 kg DM ha-1, respectively). The contribution of BNF to the forage peanut ranged from 79 to 85% and 0.5 to 5.5 kg N ha-1 cycle-1. Overall, benefits from forage peanut were minimal because legume percentage was less than 10%, while N input in the system by N-fertilizer increased palisadegrass herbage biomass.


Subject(s)
Arachis , Fertilizers , Livestock , Animals , Arachis/growth & development , Biomass , Brazil , Cattle , Fabaceae/growth & development , Fertilizers/analysis , Livestock/growth & development
19.
J Sci Food Agric ; 101(12): 5002-5015, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33559883

ABSTRACT

BACKGROUND: Peanuts are widely grown in Brazil because of their great importance in the domestic vegetable oil industry and the succession of sugarcane, soybean and maize crops, contributing to soil conservation and improvement in agricultural areas. Thus, the present study aimed to determine the zoning of peanuts' climatic risk by estimating the water requirement satisfaction index (WRSI) for the crop in Brazil. We used a historical series of data on average air temperature and rainfall between 1980 and 2016. Reference evapotranspiration was estimated using the method of Thornthwaite, and we subsequently calculated crop evapotranspiration and maximum evapotranspiration. Water balances for all stations were calculated using the method of Thornthwaite and Mather, with an available water capacity in the soil of 15, 30 and 45 mm. The definitions of suitable, unfit and restricted areas and the planting season were performed using the WRSI. RESULTS: Brazil has low climatic risk areas for growing peanuts throughout the year, except for winter. The country reveals that 88.19%, 97.93%, 99.16% and 39.25% of its area is suitable for planting peanuts on planting dates in spring, summer, autumn and winter, respectively. CONCLUSION: Brazil has a large part of the areas favorable to the planting of peanuts. The maximum availability of soil water at a depth of 15, 30 and 45 mm does not influence regions with respect to peanut growing in Brazil. The states of Piauí, Ceará and Bahia are the most unsuitable on the winter planting date, with an average WRSI of 0.22. © 2021 Society of Chemical Industry.


Subject(s)
Arachis/growth & development , Arachis/metabolism , Brazil , Climate , Crop Production/history , Ecosystem , History, 20th Century , History, 21st Century , Seasons , Soil/chemistry , Temperature , Water/analysis , Water/metabolism
20.
J Basic Microbiol ; 61(2): 165-176, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33448033

ABSTRACT

Sugarcane/peanut intercropping is a highly efficient planting pattern in South China. However, the effects of sugarcane/peanut intercropping on soil quality need to be clarified. This study characterized the soil microbial community and the soil quality in sugarcane/peanut intercropping systems by the Illumina MiSeq platform. The results showed that the intercropping sugarcane (IS) system significantly increased the total N (TN), available N (AN), available P (AP), pH value, and acid phosphatase activity (ACP), but it had little effect on the total P (TP), total K (TK), available K (AK), organic matter (OM), urease activity, protease activity, catalase activity, and sucrase activity, compared with those in monocropping sugarcane (MS) and monocropping peanut (MP) systems. Both intercropping peanut (IP) and IS soils contained more bacteria and fungi than soils in the MP and MS fields, and the microbes identified were mainly Chloroflexi and Acidobacteria, respectively. Intercropping significantly increased the number of unique microbes in IS soils (68 genera), compared with the numbers in the IP (14), MS (17), and MP (16) systems. The redundancy analysis revealed that the abundances of culturable Acidobacteriaceae subgroup 1, nonculturable DA111, and culturable Acidobacteria were positively correlated with the measured soil quality in the intercropping system. Furthermore, the sugarcane/peanut intercropping significantly increased the economic benefit by 87.84% and 36.38%, as compared with that of the MP and MS, respectively. These results suggest that peanut and sugarcane intercropping increases the available N and P content by increasing the abundance of rhizospheric microbes, especially Acidobacteriaceae subgroup 1, DA111, and Acidobacteria.


Subject(s)
Agriculture/methods , Arachis/growth & development , Saccharum/growth & development , Soil Microbiology , Soil/chemistry , Acid Phosphatase/analysis , Agriculture/economics , Arachis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Microbiota , Nitrogen/analysis , Phosphates/analysis , Saccharum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...