Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(20): 57653-57666, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36971945

ABSTRACT

Although effects of atmospheric nitrogen (N) deposition on forest plants have been widely investigated, N interception and absorption effects by forest canopy should not be neglected. Moreover, how N deposition change the molecular biological process of understory dominant plants, which was easily influenced by canopy interception so as to further change physiological performance, remains poorly understood. To assess the effects of N deposition on forest plants, we investigated the effects of understory (UAN) and canopy N addition (CAN) on the transcriptome and physiological properties of Ardisia quinquegona, a dominant subtropical understory plant species in an evergreen broad-leaved forest in China. We identified a total of 7394 differentially expressed genes (DEGs). Three of these genes were found to be co-upregulated in CAN as compared to control (CK) after 3 and 6 h of N addition treatment, while 133 and 3 genes were respectively found to be co-upregulated and co-downregulated in UAN as compared to CK. In addition, highly expressed genes including GP1 (a gene involved in cell wall biosynthesis) and STP9 (sugar transport protein 9) were detected in CAN, which led to elevated photosynthetic capacity and accumulation of protein and amino acid as well as decrease in glucose, sucrose, and starch contents. On the other hand, genes associated with transport, carbon and N metabolism, redox response, protein phosphorylation, cell integrity, and epigenetic regulation mechanism were affected by UAN, resulting in enhanced photosynthetic capacity and carbohydrates and accumulation of protein and amino acid. In conclusion, our results showed that the CAN compared to UAN treatment had less effects on gene regulation and carbon and N metabolism. Canopy interception of N should be considered through CAN treatment to simulate N deposition in nature.


Subject(s)
Ardisia , Trees , Trees/metabolism , Ardisia/metabolism , Nitrogen/metabolism , Carbon/metabolism , Epigenesis, Genetic , Forests , Plants/metabolism , Carbohydrates , China , Amino Acids/metabolism , Ecosystem
2.
Oxid Med Cell Longev ; 2020: 7963212, 2020.
Article in English | MEDLINE | ID: mdl-33123316

ABSTRACT

Triple-negative breast cancers (TNBCs) are associated with poor patient survival because of the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions. Our previous studies have shown that the triterpenoid saponin AG8 from Ardisia gigantifolia stapf. inhibits the proliferation of MDA-MB-231 cells. In this study, the effects of AG8 were further analyzed in different TNBC cell types: MDA-MB-231, BT-549, and MDA-MB-157 cells. AG8 inhibited the viability of MDA-MB-231, BT-549, and MDA-MB-157 cells in a dose-dependent manner and showed stronger cytotoxicity to African American (AA) and mesenchymal (M) subtypes than Caucasian (CA) and mesenchymal stem-like (MSL) subtypes, respectively. AG8 impaired the uptake of MitoTracker Red CMXRos by the mitochondria of TNBC cells in a dose-dependent manner, and this was recovered by N-acetyl-l-cysteine (NAC). AG8 affected GSH, SOD, and MDA levels of TNBC cells, but different TNBC subtypes had different sensitivities to AG8 and NAC. In addition, we found that AG8 increased the Bax/Bcl-2 ratio and the levels of cytoplasmic cytochrome c and significantly decreased phosphorylation of ERK and AKT in BT549 and MDA-MB-157 cells. AG8 elicited its anticancer effects through ROS generation, ERK and AKT activation, and by triggering mitochondrial apoptotic pathways in TNBC cells. AG8 had selective cytotoxic effects against the AA and M TNBC subtypes and markedly induced MDA-MB-157 (AA subtype) cell apoptosis through pathways that were not associated with ROS, which was different from the other two subtypes. The underlying mechanisms should be further investigated.


Subject(s)
Apoptosis/drug effects , Ardisia/chemistry , Oxidative Stress/drug effects , Saponins/pharmacology , Acetylcysteine/pharmacology , Ardisia/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glutathione/metabolism , Humans , Malondialdehyde/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oncogene Protein v-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triterpenes/pharmacology , bcl-2-Associated X Protein/metabolism
3.
J Biotechnol ; 311: 12-18, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32084416

ABSTRACT

To develop an alternative medicine related with taxol/camptothecin, a hairy roots induction system for measuring triterpenoid saponin ardicrenin was established. In the current study, mature and healthy seeds of Ardisia crenata plants were selected for obtaining aseptic seedlings. Two Agrobacterium rhizogenes strains ATCC 15834 and A4 were used to infect aseptic euphylla for inducing hairy roots of A. crenata plants. For the best combination of seeds germination, a Murashige-Skoog medium containing 1.0 mg L-1 6-benzylaminopurine and 1.0 mg L-1 naphthalene acetic acid was made, which reached a rate of 92.4 %. Results showed that ATCC 15834 and A4 both induced hairy roots of A. crenata for improving ardicrenin production. The PCR analysis demonstrated that ATCC 15834 and A4 Ri plasmid T-DNA had been successfully transferred and integrated into the genome of leaf cell nuclei, however the Vir region was not. Further, ardicrenin content in hairy roots ACHR 15834 8.2 %) induced by ATCC 15834 was quantified by the RP-HPLC, which was also 1.8-, 2.7-, 9.4- and 2.6-fold greater than those of ACHR 4 induced by A4 (4.5 %), ACR C formed by tissue culture (3.1 %), euphylla (0.8 %) and NR C formed nature (3.2 %), respectively. Taken together, hairy root lines of A. crenata obtained were able to express naturally more ardicrenin than natural plants.


Subject(s)
Ardisia/metabolism , Oleanolic Acid/analogs & derivatives , Plant Roots/metabolism , Saponins/metabolism , Agrobacterium/metabolism , Ardisia/microbiology , Chromatography, High Pressure Liquid , Oleanolic Acid/metabolism , Plant Roots/microbiology
4.
Ecotoxicol Environ Saf ; 160: 134-143, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29800880

ABSTRACT

Globally, nitrogen deposition increment has caused forest structural changes due to imbalanced plant nitrogen metabolism and subsequent carbon assimilation. Here, a 2 consecutive-year experiment was conducted to reveal the effects of canopy addition of nitrogen (CAN) on nitrogen absorption, assimilation, and allocation in leaves of three subtropical forest woody species (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that CAN altered leaf nitrogen absorption, assimilation and partitioning of different plants in different ways in subtropical forest. It shows that CAN increased maximum photosynthetic rate (Amax), photosynthetic nitrogen use efficiency (PNUE), and metabolic protein content of the two understory species A. quinquegona and B. cochinchinensis. By contrary, for the overstory species, C. henryi, Amax, PNUE, and metabolic protein content were significantly reduced in response to CAN. We found that changes in leaf nitrogen metabolism were mainly due to the differences in enzyme (e.g. Ribulose-1,5-bisphosphate carboxylase, nitrate reductase, nitrite reductase and glutamine synthetase) activities under CAN treatment. Our results indicated that C. henryi may be more susceptible to CAN treatment, and both A. quinquegona and B. cochinchinensis could better adapt to CAN treatment but in different ways. Our findings may partially explain the ongoing degradation of subtropical forest into a community dominated by small trees and shrubs in recent decades. It is possible that persistent high levels of atmospheric nitrogen deposition will lead to the steady replacement of dominant woody species in this subtropical forest.


Subject(s)
Ardisia/metabolism , Fagaceae/metabolism , Forests , Melastomataceae/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Carbon/metabolism , Photosynthesis , Trees/metabolism
5.
Environ Microbiol ; 18(8): 2507-22, 2016 09.
Article in English | MEDLINE | ID: mdl-26663534

ABSTRACT

A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A. crenata.


Subject(s)
Ardisia/metabolism , Ardisia/microbiology , Burkholderia/genetics , Depsipeptides/biosynthesis , Plant Leaves/microbiology , Base Sequence , Biological Evolution , Biological Transport/genetics , Burkholderia/classification , Carbohydrate Metabolism/genetics , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Secondary Metabolism/genetics , Seedlings , Sequence Analysis, DNA , Symbiosis/genetics , Symbiosis/physiology
6.
J Cancer Res Ther ; 8(3): 404-10, 2012.
Article in English | MEDLINE | ID: mdl-23174723

ABSTRACT

CONTEXT: Ardisia crispa Thunb. A. DC (Myrsinaceae) or locally known as hen's eyes has been used in local folk medicine as a remedy in various illnesses. Previously, it has been reported to inhibit various inflammatory diseases. However, research done on this plant is still limited. AIMS: In the present study, the hexane fraction of the A. crispa root (ACRH) was evaluated on the peri-initiation and promotion phases of skin carcinogenesis. MATERIALS AND METHODS: This two-stage skin carcinogenesis was induced by a single topical application of 7,12-dimethylbenz(α)anthracene (DMBA) and promoted by repeated treatment with croton oil for 10 weeks in Imprinting Control Region (ICR) mice. Morphological observation would be conducted to measure tumor incidence, tumor burden, and tumor volume. Histological evaluation on the skin tissue would also be done. RESULTS: The carcinogen control group exhibited 66.67% of tumor incidence. Although, in the ACRH-treated groups, at 30 mg/kg, the mice showed only 10% of tumor incidence with a significant reduction (P < 0.05) in the values of tumor burden and tumor volume of 2.00 and 0.52 mm(3), respectively. Furthermore, the result was significantly lower than that of the carcinogen and curcumin control. At 100 mg/kg, ACRH showed a comparable result to carcinogen control. On the contrary, at 300 mg/kg, ACRH exhibited 100% tumor incidence and showed a significant elevated (P < 0.05) value of tumor burden (3.80) and tumor volume (14.67 ± 2.48 mm(3)). CONCLUSIONS: The present study thus demonstrates that the anti-tumor effect of the chemopreventive potential of ACRH is at a lower dosage (30 mg/kg bwt) in both the initiating and promotion period, yet it exhibits a promoting effect at a higher dosage (300 mg/kg bwt).


Subject(s)
Ardisia/metabolism , Papilloma/drug therapy , Papilloma/prevention & control , Skin Neoplasms/drug therapy , Skin Neoplasms/prevention & control , 9,10-Dimethyl-1,2-benzanthracene , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Chemoprevention , Croton Oil , Curcumin/pharmacology , Lipid Peroxidation/drug effects , Male , Medicine, Traditional , Mice , Mice, Inbred ICR , Papilloma/chemically induced , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species , Skin Neoplasms/chemically induced
7.
Tree Physiol ; 32(5): 535-44, 2012 May.
Article in English | MEDLINE | ID: mdl-22539637

ABSTRACT

We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation capability.


Subject(s)
Alnus/metabolism , Ardisia/metabolism , Ferns/metabolism , Photosynthesis , Alnus/radiation effects , Ardisia/radiation effects , Carbon Dioxide/metabolism , Electron Transport , Ferns/radiation effects , Plant Leaves/metabolism , Plant Stomata/physiology , Seasons , Species Specificity , Sunlight , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...