Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 773
Filter
1.
PLoS One ; 19(6): e0299312, 2024.
Article in English | MEDLINE | ID: mdl-38843202

ABSTRACT

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Subject(s)
Arecaceae , Cellulose , Fruit , Lignin , Oxidation-Reduction , Cellulose/chemistry , Fruit/chemistry , Arecaceae/chemistry , Lignin/chemistry , Nanofibers/chemistry , Palm Oil/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Hydrogen Peroxide/chemistry
2.
J Ethnopharmacol ; 331: 118283, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38734393

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syagrus coronata, a palm tree found in northeastern Brazil, popularly known as licuri, has socioeconomic importance for the production of vegetable oil rich in fatty acids with nutritional and pharmacological effects. Licuri oil is used in traditional medicine to treat inflammation, wound healing, mycosis, back discomfort, eye irritation, and other conditions. AIM OF THE STUDY: The study aimed to evaluate the antinociceptive, anti-inflammatory, and antipyretic effects of treatment with Syagrus coronata fixed oil (ScFO), as well as to determine the safety of use in mice. MATERIALS AND METHODS: Initially, the chemical characterization was performed by gas chromatography-mass spectrometry. Acute single-dose oral toxicity was evaluated in mice at a dose of 2000 mg/kg. Antinociceptive activity was evaluated through abdominal writhing, formalin, and tail dipping tests, and the anti-inflammatory potential was evaluated through the model of acute inflammation of ear edema, peritonitis, and fever at concentrations of 25, 50, and 100 mg/kg from ScFO. RESULTS: In the chemical analysis of ScFO, lauric (43.64%), caprylic (11.7%), and capric (7.2%) acids were detected as major. No mortality or behavioral abnormalities in the mice were evidenced over the 14 days of observation in the acute toxicity test. ScFO treatment decreased abdominal writhing by 27.07, 28.23, and 51.78% at 25, 50, and 100 mg/kg. ScFO demonstrated central and peripheral action in the formalin test, possibly via opioidergic and muscarinic systems. In the tail dipping test, ScFO showed action from the first hour after treatment at all concentrations. ScFO (100 mg/kg) reduced ear edema by 63.76% and leukocyte and neutrophil migration and IL-1ß and TNF-α production in the peritonitis test. CONCLUSION: Mice treated with ScFO had a reduction in fever after 60 min at all concentrations regardless of dose. Therefore, the fixed oil of S. coronata has the potential for the development of new pharmaceutical formulations for the treatment of pain, inflammation, and fever.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Edema , Plant Oils , Animals , Analgesics/pharmacology , Analgesics/isolation & purification , Analgesics/toxicity , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Plant Oils/pharmacology , Male , Edema/drug therapy , Edema/chemically induced , Pain/drug therapy , Peritonitis/drug therapy , Antipyretics/pharmacology , Arecaceae/chemistry , Female , Inflammation/drug therapy , Inflammation/chemically induced , Fever/drug therapy , Fever/chemically induced , Administration, Oral , Disease Models, Animal
3.
Int J Biol Macromol ; 269(Pt 1): 132045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710254

ABSTRACT

Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.


Subject(s)
Cellulose , Biopolymers/chemistry , Cellulose/chemistry , Arecaceae/chemistry , Starch/chemistry , Biocompatible Materials/chemistry
4.
Food Funct ; 15(11): 5752-5784, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38753200

ABSTRACT

Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.


Subject(s)
Arecaceae , Forests , Fruit , Myrtaceae , Fruit/chemistry , Brazil , Humans , Myrtaceae/chemistry , Arecaceae/chemistry , Eugenia/chemistry , Phytochemicals/analysis , Antioxidants/analysis , Antioxidants/pharmacology , Plant Extracts/chemistry
5.
PeerJ ; 12: e17282, 2024.
Article in English | MEDLINE | ID: mdl-38666083

ABSTRACT

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Subject(s)
Cells, Immobilized , Fermentation , Fumarates , Fumarates/metabolism , Cells, Immobilized/metabolism , Palm Oil , Fruit/microbiology , Fruit/chemistry , Arecaceae/microbiology , Arecaceae/chemistry , Plant Oils/metabolism , Hydrolysis , Glucose/metabolism
6.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Article in English | MEDLINE | ID: mdl-38636760

ABSTRACT

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Subject(s)
Arecaceae , Germination , Mannans , Seeds , Seeds/growth & development , Seeds/chemistry , Mannans/chemistry , Arecaceae/chemistry , Arecaceae/growth & development , Trees , Lignin/chemistry , Lignin/metabolism , Endosperm/chemistry , Endosperm/metabolism , Seedlings/growth & development
7.
Trop Anim Health Prod ; 56(4): 136, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647730

ABSTRACT

This study examined the effects of using mushroom mycelium to ferment tigernut and cassava pulp on the growth performance, haematology and immunology of rabbits. Seventy-five New Zealand Bulk grower rabbits were randomly distributed to four treatment groups and a control group in a completely randomized approach. The treatment groups were fed with formulated experimental diets containing one of fermented tigernut drink by-product (FT), fermented cassava sievate (FC), unfermented tigernut drink by-product (UT), or unfermented cassava sievate (UC). The control group was fed a basal diet with no additives. The proximate composition of the fermented feed was analyzed. The weight gain of the animals was, 834.5, 633, 790, 510, and 706 g for control, FT, FC, UT, and UC respectively. The packed cell volume (PCV) for animals in the control group, FT, and FC are 34.33, 37.26, and 32.29% respectively. The red blood cell (RBC) of the FT was favourably improved (5.53 × 1012/L) compared to those of UT (2.28 × 1012/L), while there was a reduction in the red blood cell count of FC group (1.02 × 1012/L). Conclusively, the inclusion of fermented tiger nut drink by-product in rabbit feed improved the PCV and RBC of the rabbits' understudy but did not affect their growth performance.


Subject(s)
Animal Feed , Diet , Fermentation , Manihot , Animals , Rabbits/growth & development , Rabbits/blood , Manihot/chemistry , Male , Animal Feed/analysis , Diet/veterinary , Random Allocation , Arecaceae/chemistry , Hematocrit/veterinary , Weight Gain/drug effects
8.
Braz J Microbiol ; 55(2): 1179-1187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671219

ABSTRACT

The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.


Subject(s)
Fermentation , Fumarates , Rhizopus , Rhizopus/metabolism , Fumarates/metabolism , Culture Media/chemistry , Culture Media/metabolism , Biomass , Fruit/microbiology , Fruit/chemistry , Fruit/metabolism , Hydrolysis , Palm Oil/metabolism , Palm Oil/chemistry , Arecaceae/metabolism , Arecaceae/chemistry , Arecaceae/microbiology
9.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526713

ABSTRACT

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Subject(s)
Acetic Acid , Ammonium Compounds , Water Pollutants, Chemical , Adsorption , Acetic Acid/chemistry , Ammonium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration , Arecaceae/chemistry , Charcoal/chemistry , Water Purification/methods
10.
Int J Biol Macromol ; 261(Pt 2): 129852, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307432

ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus (Curculionidae: Coleoptera) is a highly destructive global pest of coconut trees, with a preference for laying its eggs on new leaves. Females can identify where to lay eggs by using their sense of smell to detect specific odorants found in new leaves. In this study, we focused on the two odorants commonly found in new leaves by GC-MS: trans, trans-2,4-nonadienal and trans-2-nonenal. Our behavioral assays demonstrated a significant attraction of females to both of these odorants, with their electrophysiological responses being dose-dependent. Furthermore, we examined the expression patterns induced by these odorants in eleven RferOBP genes. Among them, RferOBP3 and RferOBP1768 exhibited the most significant and simultaneous upregulation. To further understand the role of these two genes, we conducted experiments with females injected with OBP-dsRNA. This resulted in a significant decrease in the expression of RferOBP3 and RferOBP1768, as well as impaired the perception of the two odorants. A fluorescence competitive binding assay also showed that both RferOBPs strongly bound to the odorants. Additionally, sequence analysis revealed that these two RferOBPs belong to the Minus-C family and possess four conserved cysteines. Molecular docking simulations showed strong interactions between these two RferOBPs and the odorant molecules. Overall, our findings highlight the crucial role of RferOBP3 and RferOBP1768 in the olfactory perception of the key odorants in coconut palm new leaves. This knowledge significantly improves our understanding of how RPW females locate sites for oviposition and lays the foundation for future research on the development of environmentally friendly pest attractants.


Subject(s)
Arecaceae , Weevils , Animals , Female , Cocos/genetics , Odorants , Weevils/genetics , Molecular Docking Simulation , Arecaceae/chemistry
11.
Environ Res ; 250: 118366, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38331153

ABSTRACT

Numerous fractionation methods have been developed in recent years for separating components such as cellulose, hemicellulose, and lignin from lignocellulosic biomass wastes. Deep eutectic solvents (DES) have recently been widely investigated as captivating green solvents for biomass fractionation. However, most acidic-based deep eutectic solvent fractionation produces condensed lignin with low ß-O-4 content. Besides, most DESs exhibit high viscosity, which results in poor mass transfer properties. This study aimed to address the challenges above by incorporating ethanol into the deep eutectic solvent at various concentrations (10-50 wt%) to fractionate oil palm fronds at a mild condition, i.e., 80 °C, 1 atm. Cellulose residues fractionated with ethanol-assisted deep eutectic solvent showed a maximum glucose yield of 85.8% when 20 wt% of ethanol was incorporated in the deep eutectic solvent, significantly higher than that achieved by pure DES (44.8%). Lignin extracted with ethanol-assisted deep eutectic solvent is lighter in color and higher in ß-O-4 contents (up to 44 ß-O-4 per 100 aromatic units) than pure DES-extracted lignin. Overall, this study has demonstrated that incorporating ethanol into deep eutectic solvents could enhance the applicability of deep eutectic solvents in the complete valorization of lignocellulosic biomass. Highly enzymatic digestible cellulose-rich solid and ß-O-4-rich lignin attained from the fractionation could serve as sustainable precursors for the production of biofuels.


Subject(s)
Deep Eutectic Solvents , Ethanol , Lignin , Lignin/chemistry , Ethanol/chemistry , Deep Eutectic Solvents/chemistry , Chemical Fractionation/methods , Biomass , Arecaceae/chemistry , Solvents/chemistry
12.
J Fish Dis ; 47(6): e13924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300462

ABSTRACT

Vibrio harveyi and Vibrio parahaemolyticus are species of the Vibrio genus that often cause disease and mass mortality in crustaceans. If not handled quickly and appropriately, these diseases can cause considerable losses to farmers. Therefore, it is necessary to find a solution with safe and environmentally friendly disease prevention technology using natural ingredients, among others from plants, namely oil palm. Some parts of oil palm, namely leaves, fronds, fibres and oil palm pulp, which are palm waste, contain antibacterial compounds. This study aimed to assess the antibacterial activity of palm waste extracts, namely pulp, leaves, fronds and fibres using n-hexane, ethyl acetate, chloroform, ethanol and water maceration solvents against pathogenic bacteria V. harveyi and V. parahaemolyticus, and identify active compounds contained in palm waste. The results of the research are expected to produce innovative and sustainable solutions to control diseases in shrimp farming, contribute to the development of a sustainable fishing industry and open up the potential for utilizing palm waste as a value-added resource in the field of aquatic health. The results of observations on antibacterial activity tests and identifying the content of palm waste extract compounds were analysed descriptively displayed in the form of figures, tables and graphs. The results showed that palm waste extracts (pulp, leaves, fronds and fibres) with ethyl acetate and ethanol maceration solvents had very strong antibacterial potential, namely 20.14 ± 0.31 mm-25.52 ± 1.42 mm on V. harveyi bacteria and 20.41 ± 0.55 mm-25.00 ± 0.51 mm on V. parahaemolyticus bacteria. Palm extracts with n-hexane (>20 mm) and chloroform solvents generally have strong category antibacterial potential (10-20 mm), and palm extracts in water solvents have medium category potential (5-10 mm) against V. harveyi and V. parahemolyticus bacteria. The results of phytochemical tests on palm waste extracts with ethyl acetate and ethanol maceration solvents contain bioactive compounds of flavonoids, saponins, polyphenols and alkaloid tannins, steroids and triterpenoids. Palm extracts with n-hexane and chloroform solvents generally contain saponins, alkaloids, steroids and triterpenoids, while palm waste extracts with water solvents contain saponins.


Subject(s)
Anti-Bacterial Agents , Plant Extracts , Vibrio parahaemolyticus , Vibrio , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Vibrio/drug effects , Vibrio parahaemolyticus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Arecaceae/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis
13.
Braz J Biol ; 83: e276545, 2023.
Article in English | MEDLINE | ID: mdl-37970907

ABSTRACT

The bacaba (Oenocarpus bacaba Mart.) peel corresponds to 15% of the whole fruit and is rich in antioxidants with potential application in product development. In nanotechnology, emulsified formulations such as nanoemulsions stand out for providing modified release and improving the bioavailability of conveyed substances. The aim of this work was to develop nanoemulsified systems from baru oil containing hydroalcoholic extract from the bacaba peel, evaluate their stability and antioxidant potential. After the HLB (Hydrophilic-lipophilic balance) determination of the baru oil, thirty-two formulations were developed, varying the proportions of surfactants, aqueous phase, and baru oil. Of those 32, 16 formed emulsified systems, and the ones with a higher amount of oil (20%) were incorporated with the BPE. The systems were submitted to stability studies to verify their viability. After that, several tests were performed, such as rheological characteristics, hydrodynamic diameter of the droplets, polydispersion index, zeta potential, and antioxidant potential by DPPH and ABTS+ radical scavenging methods. After the studies, two samples remained stable and presented a non-Newtonian pseudoplastic profile with thixotropy, hydrodynamic diameter of less than 200 nm, monodispersity, and negative zeta potential. The BPE showed antioxidant potential, with superior activity when incorporated into the nanoemulsified system. A strong negative correlation was found between the two antioxidant methods, where both demonstrated the same profile of potential antioxidant activity for the extract and formulations. The studied formulation showed that the use of BPE is a viable alternative for the development of new products based on sustainable technologies.


Subject(s)
Antioxidants , Arecaceae , Antioxidants/chemistry , Fruit/chemistry , Arecaceae/chemistry , Plant Extracts/chemistry
14.
Sci Rep ; 13(1): 20635, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996522

ABSTRACT

The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family.


Subject(s)
Arecaceae , Genome, Chloroplast , Phylogeny , Arecaceae/genetics , Arecaceae/chemistry
15.
Food Res Int ; 173(Pt 1): 113172, 2023 11.
Article in English | MEDLINE | ID: mdl-37803529

ABSTRACT

Formulations of biodegradable films using macrocarpa peach palm flour (low amylose starch), chitosan and glycerol, were developed and the effects of the drying temperature on films by assessing their physicochemical, mechanical, barrier, optical, structural, antioxidant properties, and the biodegradability in soil were evaluated. Chitosan enhanced the mechanical properties of the films, but they showed no antimicrobial activity against the tested food-borne pathogens, except for Listeria monocytogenes, for which the inhibition zone was from 0.1 to 0.6 cm. Films with higher concentrations of peach palm flour are opaquer, with better antioxidant characteristics and content of phenolic compounds compared to films made with lower concentrations of flour. The films presented a yellowish color because of the carotenoids found in peach palm flour, 29.63 µg 100 g-1, and exhibited a C-type X-ray pattern, characteristic peak of materials where amylose and amylopectin are present. After 15 days in soil, the films lost 30% of their initial weight. Therefore, these results suggest that the development of films as food preservative is a promising field and that the material used in the study are suitable for their formulation.


Subject(s)
Arecaceae , Chitosan , Antioxidants , Amylose , Chitosan/chemistry , Arecaceae/chemistry , Soil
16.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569487

ABSTRACT

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Subject(s)
Antineoplastic Agents , Arecaceae , Melanoma , Nanogels , Nanoparticle Drug Delivery System , Palm Oil , Resveratrol , Resveratrol/administration & dosage , Melanoma/therapy , Humans , Cell Line, Tumor , Nanogels/administration & dosage , Nanogels/chemistry , Arecaceae/chemistry , Palm Oil/chemistry , Seeds/chemistry , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
17.
Braz J Biol ; 83: e271577, 2023.
Article in English | MEDLINE | ID: mdl-37466512

ABSTRACT

Fungal diseases, especially those that affect the root systems of plants, caused by Rhizoctonia and Macrophomina are limiting factors for achieving high crop yields. Alternatives to controlling fungi with chemical products drive the search for new options for bioactive compounds from plants. Attalea geraensis, a palm tree from the Brazilian Cerrado, is rich in flavonoids with antifungal actions. The objective of this work is to identify the chemical classes present in the ethanolic extract of green leaves of A. geraensis and determine the antifungal potential of the extract against isolates of Macrophomina phaseolina (Tassi) Goid. and Rhizoctonia solani JG Kühn. Phytochemical prospection, flavonoid dereplication, and antifungal activity were carried out of the ethanolic extract of the green leaves of A. geraensis harvested in the Cerrado area of Brazil. Steroids, triterpenes, saponins, and anthraquinones are described here for the first time for the leaves of A. geraensis. The flavonoids quercetin, isorhamnetin, 3,7-dimethylquercetin, quercetin 3-galactoside, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one, rhamnazin 3-galactoside, keioside, and rhamnazin 3-rutinoside were identified. Of these, only quercetin and isorhamnetin had already been identified in the leaves of A. geraensis. The results show a fungistatic potential for the species. The diversity of flavonoids present in the leaves of A. geraensis may be the result of a synergistic action between fungus and plant or there could be an antagonistic effect between flavonoids and the other identified chemical classes.


Subject(s)
Antifungal Agents , Arecaceae , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Brazil , Arecaceae/chemistry , Quercetin/analysis , Plant Extracts/chemistry , Flavonoids/analysis , Ethanol/analysis , Ethanol/chemistry , Plant Leaves/chemistry , Galactosides/analysis
18.
Int J Biol Macromol ; 242(Pt 4): 125099, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37263328

ABSTRACT

Natural fibers are available as an essential substitute for synthetic fiber in many applications. However, the sensitivity of Chinese Windmill Palm or Trachycarpus Fortune Fiber (TFF) to water causes low interfacial bonding between the matrix and the fiber and at the end reduces the mechanical properties of the composite product. Alkaline treatment improves mechanical properties and does not affect water absorption. Hence, additional treatment in the coating is required. This study uses alkaline treatment and coating modification using blended chitosan and Acrylated Epoxidized Soybean Oil (AESO). Blend coating between AESO and chitosan is performed to increase water absorption and mechanical properties. TFF water resistance improved significantly after the coating, with water absorption of the alkaline/blend coating-TFF of 3.98 % ± 0.52 and swell ability of 3.156 % ± 0.17. This indicated that blend coating had formed a cross-link of fiber and matrix after alkalization. Thus, the single fiber tensile strength increased due to the alkaline treatment, and water absorption decreased due to the coating. The combination of alkaline treatment and blend coating on TFF brings excellent properties, as shown by the increase in tensile strength in both single fiber test and composite.


Subject(s)
Arecaceae , Biopolymers , Chitosan , Coated Materials, Biocompatible , Soybean Oil , Arecaceae/chemistry , Chitosan/chemistry , Alkalies/chemistry , Tensile Strength , Soybean Oil/chemistry , Hydrophobic and Hydrophilic Interactions , Biopolymers/chemistry , Coated Materials, Biocompatible/chemistry
19.
Microb Pathog ; 180: 106147, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169312

ABSTRACT

This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 µg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 µg/mL), C. krusei (IC50 = 26.67 µg/mL), and C. tropicalis (IC50 = 1164 µg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.


Subject(s)
Anti-Infective Agents , Arecaceae , Fluconazole/pharmacology , Arecaceae/chemistry , Norfloxacin/pharmacology , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Candida albicans , Plant Oils/pharmacology , Anti-Bacterial Agents/pharmacology , Candida tropicalis , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
20.
Nutrients ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839349

ABSTRACT

The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.


Subject(s)
Arecaceae , Euterpe , Euterpe/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Arecaceae/chemistry , Diet , Fruit/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...