Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30305351

ABSTRACT

The emergence of Old and New World arenaviruses from rodent reservoirs persistently threatens human health. The GP1 subunit of the envelope-displayed arenaviral glycoprotein spike complex (GPC) mediates host cell recognition and is an important determinant of cross-species transmission. Previous structural analyses of Old World arenaviral GP1 glycoproteins, alone and in complex with a cognate GP2 subunit, have revealed that GP1 adopts two distinct conformational states distinguished by differences in the orientations of helical regions of the molecule. Here, through comparative study of the GP1 glycoprotein architectures of Old World Loei River virus and New World Whitewater Arroyo virus, we show that these rearrangements are restricted to Old World arenaviruses and are not induced solely by the pH change that is associated with virus endosomal trafficking. Our structure-based phylogenetic analysis of arenaviral GP1s provides a blueprint for understanding the discrete structural classes adopted by these therapeutically important targets.IMPORTANCE The genetically and geographically diverse group of viruses within the family Arenaviridae includes a number of zoonotic pathogens capable of causing fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed on the arenavirus envelope is a key determinant of species tropism and a primary target of the host humoral immune response. Here, we show that the receptor-binding GP1 subcomponent of the GPC spike from Old World but not New World arenaviruses adopts a distinct, pH-independent conformation in the absence of the cognate GP2. Our analysis provides a structure-based approach to understanding the discrete conformational classes sampled by these therapeutically important targets, informing strategies to develop arenaviral glycoprotein immunogens that resemble GPC as presented on the mature virion surface.


Subject(s)
Arenaviruses, New World/classification , Arenaviruses, Old World/classification , Viral Envelope Proteins/chemistry , Arenaviruses, New World/chemistry , Arenaviruses, New World/metabolism , Arenaviruses, Old World/chemistry , Arenaviruses, Old World/metabolism , Endosomes/virology , Evolution, Molecular , Hydrogen-Ion Concentration , Models, Molecular , Phylogeny , Protein Structure, Secondary
2.
PLoS Pathog ; 13(4): e1006337, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28448640

ABSTRACT

Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.


Subject(s)
Arenaviridae Infections/virology , Arenaviruses, Old World/metabolism , Lassa Fever/virology , Lassa virus/metabolism , Lysosomal Membrane Proteins/chemistry , Amino Acid Sequence , Animals , Arenaviruses, Old World/chemistry , Arenaviruses, Old World/genetics , Binding Sites , Humans , Lassa virus/chemistry , Lassa virus/genetics , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Membrane Fusion , Models, Molecular , Models, Structural , Protein Binding , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Alignment , Species Specificity
3.
Proc Natl Acad Sci U S A ; 107(12): 5441-6, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20212144

ABSTRACT

The eukaryotic translation initiation factor eIF4E, a potent oncogene, is highly regulated. One class of eIF4E regulators, including eIF4G and the 4E-binding proteins (4E-BPs), interact with eIF4E using a conserved YXXXXLPhi-binding site. The structural basis of this interaction and its regulation are well established. Really Interesting New Gene (RING) domain containing proteins, such as the promyelocytic leukemia protein PML and the arenaviral protein Z, represent a second class of eIF4E regulators that inhibit eIF4E function by decreasing eIF4E's affinity for its m(7)G cap ligand. To elucidate the structural basis of this inhibition, we determined the structure of Z and studied the Z-eIF4E complex using NMR methods. We show that Z interacts with eIF4E via a novel binding site, which has no homology with that of eIF4G or the 4E-BPs, and is different from the RING recognition site used in the ubiquitin system. Z and eIF4G interact with distinct parts of eIF4E and differentially alter the conformation of the m(7)G cap-binding site. Our results provide a molecular basis for how PML and Z RINGs reduce the affinity of eIF4E for the m(7)G cap and thereby act as key inhibitors of eIF4E function. Furthermore, our findings provide unique insights into RING protein interactions.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Amino Acid Sequence , Arenaviruses, Old World/chemistry , Binding Sites/genetics , Biophysical Phenomena , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Intracellular Signaling Peptides and Proteins , Ligands , Models, Molecular , Multiprotein Complexes , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Mapping , Protein Structure, Tertiary , Zinc Fingers
4.
J Virol ; 81(11): 5685-95, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17360738

ABSTRACT

alpha-Dystroglycan (DG) is an important cellular receptor for extracellular matrix (ECM) proteins and also serves as the receptor for Old World arenaviruses Lassa fever virus (LFV) and lymphocytic choriomeningitis virus (LCMV) and clade C New World arenaviruses. In the host cell, alpha-DG is subject to a remarkably complex pattern of O glycosylation that is crucial for its interactions with ECM proteins. Two of these unusual sugar modifications, protein O mannosylation and glycan modifications involving the putative glycosyltransferase LARGE, have recently been implicated in arenavirus binding. Considering the complexity of alpha-DG O glycosylation, our present study was aimed at the identification of the specific O-linked glycans on alpha-DG that are recognized by arenaviruses. As previously shown for LCMV, we found that protein O mannosylation of alpha-DG is crucial for the binding of arenaviruses of distinct phylogenetic origins, including LFV, Mobala virus, and clade C New World arenaviruses. In contrast to the highly conserved requirement for O mannosylation, more generic O glycans present on alpha-DG are dispensable for arenavirus binding. Despite the critical role of O-mannosyl glycans for arenavirus binding under normal conditions, the overexpression of LARGE in cells deficient in O mannosylation resulted in highly glycosylated alpha-DG that was functional as a receptor for arenaviruses. Thus, modifications by LARGE but not O-mannosyl glycans themselves are most likely the crucial structures recognized by arenaviruses. Together, the data demonstrate that arenaviruses recognize the same highly conserved O-glycan structures on alpha-DG involved in ECM protein binding, indicating a strikingly similar mechanism of receptor recognition by pathogen- and host-derived ligands.


Subject(s)
Arenaviruses, New World/metabolism , Arenaviruses, Old World/metabolism , Dystroglycans/metabolism , Molecular Mimicry , Receptors, Virus/metabolism , Animals , Arenaviruses, New World/chemistry , Arenaviruses, Old World/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Dystroglycans/chemistry , Glycosylation , Humans , Jurkat Cells , Lassa virus/metabolism , Ligands , Lymphocytic choriomeningitis virus/chemistry , Lymphocytic choriomeningitis virus/metabolism , Mice , Rabbits , Receptors, Virus/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...