Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.776
Filter
1.
Sci Rep ; 14(1): 12143, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802677

ABSTRACT

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Subject(s)
Glucose , Glycolysis , Lipopolysaccharides , Microglia , RNA, Long Noncoding , Microglia/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glucose/metabolism , Mice , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/genetics , Interferon-gamma/metabolism , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , Cell Line , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Deoxyglucose/pharmacology , Interleukin-4/metabolism , Interleukin-1beta/metabolism , Metabolic Reprogramming , Arginase , Hexokinase , Lectins
2.
Respir Res ; 25(1): 198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720340

ABSTRACT

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Subject(s)
Arginase , Autophagy , Disease Progression , Lung Neoplasms , Macrophages , Signal Transduction , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/microbiology , Humans , Mice , Autophagy/physiology , Arginase/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis, Pleural/pathology , Tuberculosis, Pleural/metabolism , A549 Cells , Mice, Inbred C57BL , Pleural Effusion/metabolism , Pleural Effusion/pathology , Cell Polarity/physiology
3.
J Immunol Res ; 2024: 2765001, 2024.
Article in English | MEDLINE | ID: mdl-38774603

ABSTRACT

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Subject(s)
Animals, Newborn , Arginase , Myeloid-Derived Suppressor Cells , Reactive Oxygen Species , beta-Glucans , beta-Glucans/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Arginase/metabolism , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Spleen/immunology , Spleen/metabolism , Spleen/cytology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL
4.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38805907

ABSTRACT

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Subject(s)
Arginase , Food Hypersensitivity , Macrophages , Mice, Inbred BALB C , Palaemonidae , Tropomyosin , Animals , Tropomyosin/immunology , Food Hypersensitivity/immunology , Mice , Macrophages/immunology , Arginase/metabolism , Palaemonidae/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cytokines/metabolism , Disease Models, Animal , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mannose-Binding Lectins/metabolism , Female , Mannose Receptor , Jejunum/immunology , Jejunum/pathology , Cells, Cultured , Histamine/metabolism , Macrophage Activation
5.
Sci Rep ; 14(1): 11575, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773273

ABSTRACT

Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.


Subject(s)
Arginase , Enzyme Inhibitors , Leishmania , Molecular Docking Simulation , Molecular Dynamics Simulation , Arginase/antagonists & inhibitors , Arginase/chemistry , Arginase/metabolism , Leishmania/enzymology , Leishmania/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Allosteric Site , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Catalytic Domain
6.
Cancer Med ; 13(8): e6980, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651187

ABSTRACT

BACKGROUND: Retifanlimab is a humanized monoclonal antibody targeting programmed death protein-1, and INCB001158 is an oral arginase inhibitor. This phase Ib study investigated retifanlimab, INCB001158, and their combination in Japanese patients with advanced solid tumors. METHODS: Patients received retifanlimab (500 mg every 4 weeks [Q4W] i.v.) or escalating doses of INCB001158 (75 or 100 mg twice daily [BID]) monotherapy in Part 1 and combination of retifanlimab (500 mg Q4W) and INCB001158 (100 mg BID) in Part 2. Primary endpoints were safety, tolerability, dose-limiting toxicities (DLTs), and determination of recommended phase II doses in Japanese patients. RESULTS: Eighteen patients (retifanlimab or INCB001158 monotherapy and combination; n = 6 each) were enrolled at 2 sites in Japan. There were no DLTs, fatal adverse events (AEs), or discontinuations due to AEs. Rash (all grade 1) was the most common treatment-emergent AE with retifanlimab (n = 6). Treatment-related AEs were reported with retifanlimab (n = 4) or INCB001158 (n = 2) monotherapy and with combination (n = 4); an immune-related AE (thyroid disorder, grade 2) was reported with combination. Two responses were observed with retifanlimab monotherapy (1 complete, 1 partial) and 1 stable disease (SD), for an overall response rate of 33.3% (95% confidence interval [CI], 4.3-77.7) and disease control rate (DCR) of 50% (95% CI, 11.8-88.2). Three patients had SD with INCB001158 monotherapy (DCR 50%; 95% CI, 11.8-88.2). No responses or SD were observed with combination therapy. CONCLUSION: Retifanlimab, INCB001158, and their combination had acceptable safety profiles. Promising retifanlimab antitumor activity warrants further investigation in Japanese patients.


Subject(s)
Arginase , Neoplasms , Humans , Female , Male , Neoplasms/drug therapy , Middle Aged , Aged , Arginase/antagonists & inhibitors , Adult , Japan , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , East Asian People
7.
Helicobacter ; 29(2): e13072, 2024.
Article in English | MEDLINE | ID: mdl-38686467

ABSTRACT

BACKGROUND: Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS: We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS: We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS: H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Interleukin-8 , NF-kappa B , Thioredoxins , Humans , Helicobacter pylori/genetics , Helicobacter pylori/physiology , Helicobacter pylori/pathogenicity , Thioredoxins/metabolism , Thioredoxins/genetics , NF-kappa B/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , Up-Regulation , Signal Transduction , Arginase/metabolism , Arginase/genetics , Cell Line , Stomach Diseases/microbiology , Stomach Diseases/metabolism , Stomach Neoplasms/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
8.
Int Immunopharmacol ; 132: 111995, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581993

ABSTRACT

Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.


Subject(s)
Arginase , Arginine/analogs & derivatives , Cryptococcosis , Cryptococcus neoformans , Mice, Inbred C57BL , Animals , Arginase/metabolism , Arginase/antagonists & inhibitors , Arginase/genetics , Cryptococcosis/immunology , Cryptococcosis/drug therapy , Cryptococcus neoformans/immunology , Cryptococcus neoformans/drug effects , Mice , Lung/immunology , Lung/pathology , Lung/drug effects , Cytokines/metabolism , Cytokines/immunology , Female , Disease Models, Animal , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/drug therapy , Humans , Th2 Cells/immunology , Th2 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Brain/immunology , Brain/drug effects , Brain/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
9.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636736

ABSTRACT

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Subject(s)
Aeromonas hydrophila , Arginase , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Mitochondria , Nitric Oxide , Animals , Aeromonas hydrophila/physiology , Arginase/genetics , Arginase/metabolism , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Nitric Oxide/metabolism , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Arginine
10.
Pol Merkur Lekarski ; 52(1): 17-22, 2024.
Article in English | MEDLINE | ID: mdl-38518228

ABSTRACT

OBJECTIVE: Aim: To study the general activity of NO synthases (gNOS), the activity of inducible and constitutive isoforms of NO synthase, the activity of arginases, and the concentration of nitrites in the nasal mucosa under the conditions of local treatment of chronic atrophic rhinitis (AR) with quercetin and platelet-rich plasma (PRP therapy).. PATIENTS AND METHODS: Materials and Methods: The study was conducted on 118 patients divided into two groups: control (n=20) and experimental (patients with AR, n=98). Experimental group was divided into 4 subgroups: standard treatment (n=29), PRP therapy (6 injections for 28 day course, n=19), Quercetin (40 mg 3 times a day for 28 days, n=26) and PRP+Quercetin (n=24) groups. RESULTS: Results: Standard therapy of SaR increases gNOS by 278.38% and arginase activity increases by 222.73%. PRP therapy increases gNOS by 211.43% and arginase by 540.91%. Quercetin elevates gNOS by 108.33% and arginase by 250%. PRP therapy and quercetin increases gNOS by 146.15% and arginase by 536.36%. CONCLUSION: Conclusions: The use of standard therapy of SaR and addition of PRP therapy, quercetin and their combination effectively restores the production of nitric oxide and the arginase activity in the nasal mucosa.


Subject(s)
Rhinitis, Atrophic , Humans , Nitric Oxide , Quercetin/pharmacology , Quercetin/therapeutic use , Arginase , Nasal Mucosa , Nitric Oxide Synthase
11.
Food Funct ; 15(7): 3446-3462, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38450419

ABSTRACT

Endothelial dysfunction (ED) is an initiating trigger and key factor in vascular complications, leading to disability and mortality in individuals with diabetes. The research concerning therapeutic interventions for ED has gained considerable interest. Fenugreek, a commonly used edible plant in dietary consumption, has attracted significant attention due to its management of diabetes and its associated complications. The research presented in this study examines the potential therapeutic benefits of fenugreek in treating ED and investigates the underlying mechanism associated with its effects. The analysis on fenugreek was performed using 70% ethanol extract, and its chemical composition was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). In total, we identified 49 compounds present in the fenugreek extract. These compounds encompass flavonoids, saponins, and phospholipids. Then, the models of ED in streptozotocin-induced diabetic mice and high glucose-induced isolated rat aortas were established for research. Through vascular function testing, it was observed that fenugreek extract effectively improved ED induced by diabetes or high glucose. By analyzing the protein expression of arginase 1 (Arg1), Arg activity, Arg1 immunohistochemistry, nitric oxide (NO) level, and the protein expression of endothelial nitric oxide synthase (eNOS), p38 mitogen-activated protein kinase (p38 MAPK), and p-p38 MAPK in aortas, this study revealed that the potential mechanism of fenugreek extract in anti-ED involves the downregulation of Arg1, leading to enhanced NO production. Furthermore, analysis of serum exosomes carrying Arg activity indicates that fenugreek may decrease the activity of Arg transported by serum exosomes, potentially preventing the increase in Arg levels triggered by the uptake of serum exosomes by vascular endothelial cells. In general, this investigation offers valuable observations regarding the curative impact of fenugreek extract on anti-ED in diabetes, revealing the involvement of the Arg1 pathway in its mechanism.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Cells , Plant Extracts , Trigonella , Rats , Mice , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Arginase , p38 Mitogen-Activated Protein Kinases/metabolism , Glucose/metabolism , Nitric Oxide Synthase Type III/metabolism
12.
Drug Discov Today ; 29(4): 103940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452923

ABSTRACT

Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Arginine/metabolism , Arginase/metabolism
13.
Neuroscience ; 545: 16-30, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38431041

ABSTRACT

Neuregulin receptor degradation protein 1 (Nrdp1) is a ring finger E3 ubiquitin ligase involved in some inflammation through ubiquitination, including macrophage polarization following cerebral hemorrhage. However, there is limited understanding regarding the mechanisms through which Nrdp1 modulates macrophage polarization and the potential impact of this modulation on neurological function. Using stereotactic injection and adenoviral transfection techniques, the corresponding animal models were constructed through injecting adenovirus, saline, or blood into the mouse striatum at different periods of time in this research. The alteration in the ratio of various M1/M2 phenotype-associated markers (e.g., CD86, CD206, IL-6, IL-10, etc.) was evaluated through immunohistochemistry, immunofluorescence, western blotting, and elisa assays. Additionally, neurological function scores and behavioral tests were utilized to evaluate changes in neurological function in mice after cerebral hemorrhage. Our results show that overexpression of Nrdp1 promotes the expression of a variety of M2 macrophage-associated markers and enhance transcriptional activity of arginase-1 (Arg1) protein through ubiquitination for early regulation M2 macrophage polarization. Additionally, Nrdp1 promotes hematoma absorption, increases IL-10 expression, inhibits inducible nitric oxide synthase (iNOS), IL-6, and TNF-α production, alleviates neurological impairment and brain edema, and accelerates functional recovery. These findings suggest that modulating macrophage polarization through Nrdp1 could be a therapeutic strategy for neurofunctional impairment in cerebral hemorrhage.


Subject(s)
Cerebral Hemorrhage , Macrophages , Recovery of Function , Ubiquitin-Protein Ligases , Animals , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Macrophages/metabolism , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Recovery of Function/physiology , Mice, Inbred C57BL , Arginase/metabolism , Arginase/genetics , Phenotype , Disease Models, Animal , Ubiquitination , Macrophage Activation/physiology
15.
Exp Parasitol ; 260: 108723, 2024 May.
Article in English | MEDLINE | ID: mdl-38432406

ABSTRACT

Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1ß,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 µg/mL while no significant impact on metabolic activity was observed at 80 µg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1ß, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1ß, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.


Subject(s)
Annexins , Arginase , Echinococcosis , Echinococcus granulosus , Macrophages , Nitric Oxide Synthase Type II , Animals , Echinococcus granulosus/genetics , Echinococcus granulosus/immunology , Mice , Macrophages/parasitology , Macrophages/metabolism , RAW 264.7 Cells , Arginase/metabolism , Arginase/genetics , Echinococcosis/parasitology , Echinococcosis/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Annexins/genetics , Annexins/metabolism , Dogs , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cytokines/metabolism , Cytokines/genetics , RNA, Messenger/metabolism , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Host-Parasite Interactions
16.
FASEB J ; 38(6): e23555, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38498346

ABSTRACT

Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Resolvins, in part, mediate inflammation-resolution programs. Indeed, Resolvin D2 (RvD2) activates GPR18, a G-protein-coupled receptor, and limits plaque progression, though the cellular targets of RvD2 remain unknown. Here, we developed a humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow-derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. To understand the functions of RvD2-GPR18 in atherosclerosis, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr-/- recipients. For these experiments, we treated each genotype with either Vehicle/PBS or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis, increased cleaved caspase-3+ cells and decreased percentage of Arginase-1+ -Mac2+ cells without a change in overall Mac2+ plaque macrophages, compared with fl/fl➔Ldlr-/- transplanted mice. RvD2 treatment decreased plaque necrosis, the percent of cleaved caspase-3+ cells and increased the percent of Arginase-1+ -Mac2+ cells in fl/fl➔Ldlr-/- mice, but not in the mKO➔Ldlr-/- transplanted mice. These results suggest that GPR18 plays a causal role in limiting atherosclerosis progression and that RvD2's ability to limit plaque necrosis is in part dependent on myeloid GRP18.


Subject(s)
Arginase , Atherosclerosis , Docosahexaenoic Acids , Mice , Animals , Caspase 3 , Macrophages , Inflammation , Atherosclerosis/genetics , Necrosis , Receptors, G-Protein-Coupled/genetics
17.
Mod Pathol ; 37(4): 100450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369188

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO) and arginase-1 (ARG1) are amino acid-metabolizing enzymes, frequently highly expressed in cancer. Their expression may deplete essential amino acids, lead to immunosuppression, and promote cancer growth. Still, their expression patterns, prognostic significance, and spatial localization in the colorectal cancer microenvironment are incompletely understood. Using a custom 10-plex immunohistochemistry assay and supervised machine learning-based digital image analysis, we characterized IDO and ARG1 expression in monocytic cells, granulocytes, mast cells, and tumor cells in 833 colorectal cancer patients. We evaluated the prognostic value and spatial arrangement of IDO- and ARG1-expressing myeloid and tumor cells. IDO was mainly expressed not only by monocytic cells but also by some tumor cells, whereas ARG1 was predominantly expressed by granulocytes. Higher density of IDO+ monocytic cells was an independent prognostic factor for improved cancer-specific survival both in the tumor center (Ptrend = .0002; hazard ratio [HR] for the highest ordinal category Q4 [vs Q1], 0.51; 95% CI, 0.33-0.79) and the invasive margin (Ptrend = .0015). Higher density of granulocytes was associated with prolonged cancer-specific survival in univariable models, and higher FCGR3+ARG1+ neutrophil density in the tumor center also in multivariable analysis (Ptrend = .0020). Granulocytes were, on average, located closer to tumor cells than monocytic cells. Furthermore, IDO+ monocytic cells and ARG1- granulocytes were closer than IDO- monocytic cells and ARG1+ granulocytes, respectively. The mRNA expression of the IDO1 gene was assessed in myeloid and tumor cells using publicly available single-cell RNA sequencing data for 62 colorectal cancers. IDO1 was mainly expressed in monocytes and dendritic cells, and high IDO1 activity in monocytes was associated with enriched immunostimulatory pathways. Our findings provided in-depth information about the infiltration patterns and prognostic value of cells expressing IDO and/or ARG1 in the colorectal cancer microenvironment, highlighting the significance of host immune response in tumor progression.


Subject(s)
Arginase , Colorectal Neoplasms , Indoleamine-Pyrrole 2,3,-Dioxygenase , Humans , Arginase/metabolism , Colorectal Neoplasms/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Myeloid Cells/metabolism , Prognosis , Tumor Microenvironment
18.
Nat Cancer ; 5(5): 774-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38355776

ABSTRACT

Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Macrophages , Pancreatic Neoplasms , Phagocytosis , Tumor Microenvironment , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Humans , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Mice , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Apoptosis , Lysosomes/metabolism , Arginase/metabolism , Efferocytosis
19.
J Leukoc Biol ; 115(6): 1094-1107, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38369808

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are implicated in the regulation of immune responses closely associated with poor clinical outcomes in cancer. However, the MDSC subtypes in non-Hodgkin's lymphoma (NHL) have not been systematically investigated. So, we investigated the percentage of MDSC subsets in 78 newly diagnosed NHL patients by flow cytometry. The results showed that all MDSC subsets increased in NHL patients compared with healthy donors. Notably, MDSCs, monocytic MDSCs, and CD14 + CD66b + MDSCs significantly increased in NHL patients compared with those with lymphadenitis donors. polymorphonuclear MDSCs (PMN-MDSCs), early-stage MDSCs (e-MDSCs), and the International Prognostic Index were independent risk factors for poor clinical efficacy and were involved in constructing the nomogram for predicting clinical efficacy. Progression-free survival (PFS) was significantly shorter in patients with high level of MDSC subsets, and PMN-MDSCs emerged as an independent prognostic factor for PFS. PMN-MDSCs, e-MDSCs, and the International Prognostic Index were involved in constructing the nomogram for predicting PFS. Patients with a higher percentage of MDSCs, PMN-MDSCs, e-MDSCs, and CD14 + CD66b + MDSCs experienced a shorter overall survival compared with those with lower percentages. In addition, research on mechanisms found that T cell function was suppressed and mediated by the expansion of MDSCs via involving arginase-1 and interleukin-10 in vitro and in vivo. In conclusion, our study demonstrates that the increased circulating MDSC subsets predict poor clinical efficacy and prognosis in NHL, potentially involving T cell suppression through MDSC subset expansion. These findings indicate the potential of MDSC subsets as comprehensive diagnostic, prognostic biomarkers, and therapeutic targets for NHL.


Subject(s)
Lymphoma, Non-Hodgkin , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Male , Female , Middle Aged , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/mortality , Lymphoma, Non-Hodgkin/diagnosis , Prognosis , Adult , T-Lymphocytes/immunology , Aged , Animals , Mice , Arginase/metabolism
20.
Reprod Sci ; 31(6): 1632-1641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38388922

ABSTRACT

Endometrial cancer (EC) is the most common gynecologic malignancy. While the majority of patients present with early-stage and low-grade EC and have an excellent prognosis, a subset has metastatic disease at presentation or develops distant recurrence after initial treatment of the primary. However, the lack of prognostic biomarkers for metastatic EC is a critical barrier. Arginase 1 (ARG1) regulates the last step of the urea cycle, and an increase in ARG1 has been correlated as a poor prognostic factor in a variety of cancers. In the present study, ARG1 expression was evaluated as a potential prognostic marker for metastatic EC in endometrial hyperplasia and cancer of mice with Pten mutation as well as Pten and Mig-6 double mutations. While Pten mutation in the uterus is not sufficient for distant metastasis, mice with concurrent ablation of Mig-6 and Pten develop distant metastasis. Our immunostaining and RT-qPCR analysis revealed that the expression of ARG1 in early stage of EC as well as endometrial hyperplasia from mice deficient in Mig-6 and Pten mutations significantly increased compared to Pten mutation in the uterus. The results suggest that a high level of ARG1 is associated with poor prognosis in association with EC of mouse.


Subject(s)
Arginase , Biomarkers, Tumor , Endometrial Neoplasms , PTEN Phosphohydrolase , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Animals , Arginase/genetics , Arginase/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Mice , Humans , Mutation , Endometrial Hyperplasia/genetics , Endometrial Hyperplasia/metabolism , Endometrial Hyperplasia/pathology , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...