Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46.647
Filter
1.
Mol Cell ; 84(10): 1819-1821, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759621

ABSTRACT

In this issue of Molecular Cell, Yang et al.1 find that arginine-to-cysteine substitutants are enriched in a subset of lung cancer proteomes, potentiated by arginine deprivation, and promote resistance to chemotherapy.


Subject(s)
Arginine , Cysteine , Lung Neoplasms , Proteome , Humans , Cysteine/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Arginine/metabolism , Proteome/metabolism , Drug Resistance, Neoplasm/genetics
2.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747276

ABSTRACT

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Arginine , Aripiprazole , Calorimetry, Differential Scanning , Lysine , Solubility , beta-Cyclodextrins , Aripiprazole/chemistry , Arginine/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Lysine/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Freeze Drying , Antipsychotic Agents/chemistry , Drug Stability , Microscopy, Electron, Scanning , Drug Compounding , Chemistry, Pharmaceutical/methods
3.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691892

ABSTRACT

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Subject(s)
Anti-Bacterial Agents , Arginine , Microbial Sensitivity Tests , Tryptophan , Tryptophan/chemistry , Tryptophan/pharmacology , Animals , Arginine/chemistry , Arginine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Mice , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Bacterial Infections/drug therapy , Humans , Escherichia coli/drug effects
4.
BMC Psychiatry ; 24(1): 358, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745327

ABSTRACT

BACKGROUND: While some evidence suggests that l-arginine may improve sexual function and alleviate depression, it has not been investigated in women with depression to assess both its effects on the depression and sexual function concurrently. METHODS: Patients who had received a diagnosis of major depressive disorder, as determined by predetermined inclusion and exclusion criteria, were enrolled in this triple-blind clinical trial. Patients were divided into two groups: group A, received L-arginine 1 gram twice daily, and group B, received a placebo for four weeks. They were evaluated at baseline, after four and eight weeks with the Hamilton Depression Rating Scale (HDRS), and Rosen's questionnaire or Female Sexual Function Index (FSFI). RESULTS: A decrease in the severity of depression was observed in all patients, which was determined due to Hamilton's questionnaire (P-value < 0.001). During the time in group A, FSFI increased. Based on the FSFI questionnaire, they had improvement in some domains, including the lubrication index and orgasm index, which significantly changed in the eighth week compared to the baseline (P-value < 0.05). However, these two indicators did not change statistically significantly compared to the placebo group. CONCLUSION: L-arginine supplementation can improve sexual function, particularly lubrication and orgasm, and mood in women with depression, with minimal side effects observed. Additional research is necessary to validate these results by examining the effects of higher dosages, extended durations, and larger populations of depressed patients. TRIAL REGISTRATION: Iranian Registry of Clinical Trial: IRCT20100127003210N26.


Subject(s)
Arginine , Depressive Disorder, Major , Humans , Female , Depressive Disorder, Major/drug therapy , Arginine/therapeutic use , Adult , Sexual Dysfunction, Physiological/drug therapy , Middle Aged , Sexual Dysfunctions, Psychological/drug therapy , Double-Blind Method , Treatment Outcome , Sexual Behavior/drug effects
5.
Sci Rep ; 14(1): 11715, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778164

ABSTRACT

Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations. Our studies have shown that arginines encoded by the CGN codon family display higher rates of mutation in both cancer genes and passenger genes than arginine codons AGA and AGG that are devoid of CpG dinucleotide, suggesting that the predominance of arginine mutations in cancer is primarily due to CpG hypermutability, rather than selection for arginine replacement. Nevertheless, our results also suggest that CGN codons for arginines may serve as Achilles' heels of cancer genes. CpG hypermutability of key arginines of proto-oncogenes, leading to high rates of recurrence of driver mutations, contributes significantly to carcinogenesis. Similarly, our results indicate that hypermutability of the CpG dinucleotide of CGA codons (converting them to TGA stop codons) contributes significantly to recurrent truncation and inactivation of tumor suppressor genes.


Subject(s)
Arginine , Codon , CpG Islands , Neoplasms , Arginine/genetics , Arginine/chemistry , Humans , Codon/genetics , Neoplasms/genetics , CpG Islands/genetics , Mutation , Oncogenes/genetics , Genes, Tumor Suppressor
6.
Food Res Int ; 187: 114311, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763626

ABSTRACT

The efficacy of amino acids as popular sports supplements has triggered debates, with their impact on athletic performance varying across sports disciplines due to diversity and heterogeneity in clinical trials. This review evaluates the ergogenic potential of amino acids, by critical appraisal of results of clinical trials of Branched chain amino acids (BCAAs), arginine, glutamine, citrulline, ß-alanine, and taurine, performed on elite sportsmen from various land and water sports. Clinical trials reviewed here confirm notable physiological benefits thereby supporting the claim that BCAA, citrulline and arginine in various doses can have positive effects on endurance and overall performance in sportsperson. Furthermore, results of clinical trials and metabolomic studies indicate that in future it would be more beneficial to design precise formulations to target the requirement of specific sports. For instance, some combinations of amino acids may be more suitable for long term endurance and some others may be suitable for short burst of excessive energy. The most important insights from this review are the identification of three key areas where research is urgently needed: a) Biomarkers that can identify the physiological end points and to distinguish the specific role of amino acid as anti-fatigue or reducing muscle soreness or enhancing energy b) In-depth sports-wise clinical trials on elite sportsperson to understand the ergogenic needs for the particular sports c) Design of precision formula for similar types of sports instead of common supplements.


Subject(s)
Amino Acids , Athletic Performance , Dietary Supplements , Sports Nutritional Physiological Phenomena , Humans , Athletic Performance/physiology , Physical Endurance/drug effects , Amino Acids, Branched-Chain/metabolism , beta-Alanine , Arginine/metabolism
7.
Food Res Int ; 187: 114436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763683

ABSTRACT

Amadori compounds (ACs) are key Maillard intermediates in various foods after thermal processing, and are also important non-saponin components in red ginseng. Currently, due to the difficulty in obtaining AC standards, the determination of multiple ACs is limited and far from optimal. In this study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. A green synthetic method was developed for arginyl-fructosyl-glucose (AFG), the major AC in red ginseng with potential health benefits. The UPLC-MS/MS method was then applied in identification and quantification of ACs in red ginseng samples, which showed for the first time that 12 other ACs also exist in red ginseng in addition to AFG and arginyl-fructose (total 98.88 % of all ACs). Contents of AFG and arginyl-fructose in whole red ginseng were 36.23 and 10.80 mg/g dry weight, respectively. Raw ginseng can be steamed and then dried whole to obtain whole red ginseng, or sliced before drying to obtain sliced red ginseng. Slicing before drying was found to reduce ACs content. Results of the present study will help to reveal the biological functions of red ginseng and related products associated with ACs and promote the standardization of red ginseng manufacture.


Subject(s)
Panax , Tandem Mass Spectrometry , Panax/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Arginine/analysis , Arginine/analogs & derivatives , Maillard Reaction , Plant Extracts/chemistry , Fructose/analysis , Fructose/chemistry , Liquid Chromatography-Mass Spectrometry
8.
Article in English | MEDLINE | ID: mdl-38765527

ABSTRACT

Objective: To examine whether the DDAH2 promoter polymorphisms -1415G/A (rs2272592), -1151A/C (rs805304) and -449G/C (rs805305), and their haplotypes, are associated with PE compared with normotensive pregnant women, and whether they affect ADMA levels in these groups. Methods: A total of 208 pregnant women were included in the study and classified as early-onset (N=57) or late-onset PE (N =49), and as normotensive pregnant women (N = 102). Results: Pregnant with early-onset PE carrying the GC and GG genotypes for the DDAH2 -449G/C polymorphism had increased ADMA levels (P=0.01). No association of DDAH2 polymorphisms with PE in single-locus analysis was found. However, the G-C-G haplotype was associated with the risk for late-onset PE. Conclusion: It is suggested that DDAH2 polymorphisms could affect ADMA levels in PE, and that DDAH2 haplotypes may affect the risk for PE.


Subject(s)
Amidohydrolases , Arginine , Haplotypes , Polymorphism, Genetic , Pre-Eclampsia , Humans , Female , Amidohydrolases/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/blood , Pregnancy , Adult , Arginine/analogs & derivatives , Arginine/blood , Arginine/genetics , Young Adult
9.
Sci Rep ; 14(1): 11549, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773318

ABSTRACT

Pediatric chronic kidney disease (CKD) is a clinical condition characterized by progressive renal function deterioration. CKD diagnosis is based on glomerular filtration rate, but its reliability is limited, especially at the early stages. New potential biomarkers (citrulline (CIT), symmetric dimethylarginine (SDMA), S-adenosylmethionine (SAM), n-butyrylcarnitine (nC4), cis-4-decenoylcarnitine, sphingosine-1-phosphate and bilirubin) in addition to creatinine (CNN) have been proposed for early diagnosis. To verify the clinical value of these biomarkers we performed a comprehensive targeted metabolomics study on a representative cohort of CKD and healthy pediatric patients. Sixty-seven children with CKD and forty-five healthy children have been enrolled in the study. Targeted metabolomics based on liquid chromatography-triple quadrupole mass spectrometry has been used for serum and plasma samples analysis. Univariate data analysis showed statistically significant differences (p < 0.05) in the concentration of CNN, CIT, SDMA, and nC4 among healthy and CKD pediatric patients. The predictive ability of the proposed biomarkers was also confirmed through specificity and sensitivity expressed in Receiver Operating Characteristic curves (AUC = 0.909). In the group of early CKD pediatric patients, AUC of 0.831 was obtained, improving the diagnostic reliability of CNN alone. Moreover, the models built on combined CIT, nC4, SDMA, and CNN allowed to distinguish CKD patients from healthy control regardless of blood matrix type (serum or plasma). Our data demonstrate potential biomarkers in the diagnosis of early CKD stages.


Subject(s)
Biomarkers , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/blood , Biomarkers/blood , Child , Female , Male , Child, Preschool , Adolescent , Glomerular Filtration Rate , Metabolomics/methods , ROC Curve , Case-Control Studies , Creatinine/blood , Arginine/analogs & derivatives
10.
Sci Rep ; 14(1): 11444, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769383

ABSTRACT

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. We here provide the mechanistic evidence in support of the relevance for these observations. Angiopoetin-1 (Ang-1), which promotes vascular integrity, was decreased in blood plasma of human and murine septic newborns. In preclinical models, administration of Ang-1 provided prophylactic protection from septic death. Arachidonic acid metabolism appears to be functionally connected to Ang-1 via reactive oxygen species (ROS) with a direct role of nitric oxide (NO). Strengthening this intersection via oral administration of arachidonic acid and/or the NO donor L-arginine provided prophylactic as well as therapeutic protection from septic death while also increasing plasma Ang-1 levels among septic newborns. Our data highlight that targeting angiogenesis-associated pathways with interventions that increase Ang-1 activity directly or indirectly through ROS/eNOS provide promising avenues to prevent and/or treat severe neonatal sepsis.


Subject(s)
Angiopoietin-1 , Neonatal Sepsis , Nitric Oxide , Reactive Oxygen Species , Humans , Animals , Infant, Newborn , Angiopoietin-1/blood , Angiopoietin-1/metabolism , Mice , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Arachidonic Acid/metabolism , Arachidonic Acid/blood , Female , Male , Arginine/blood , Arginine/metabolism , Signal Transduction , Nitric Oxide Synthase Type III/metabolism , Neovascularization, Pathologic/metabolism , Biomarkers/blood , Disease Models, Animal , Animals, Newborn , Angiogenesis
11.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38703031

ABSTRACT

This study compared milk replacer either remaining unsupplemented (CON) or supplemented with 0.5 g L-carnitine plus 16.7 g L-arginine/kg (CarArg) and fed to 48 low-birth weight (L-BtW) artificially reared piglets (24 per group) from days 7 to 28 of age. Eight farrowing series were needed to complete the study. On day 28, the lightest piglets were slaughtered, and the heaviest pigs were weaned. The heaviest pigs were weaned on day 28 and offered free access to a starter (weaning to 25 kg body weight [BW]), grower (25 to 60 kg BW), and finisher diet (60 to 96 kg BW on day 170 of age). After euthanization on days 28 and 170, blood was sampled for assessment of serum metabolite and hormone concentrations, and the semitendinosus muscle (STM) was weighed, and later subjected to enzyme activity analysis and assessment of myofiber characteristics. In the 170-d-old pigs carcass and meat quality traits were assessed. Growth data were analyzed accordingtoatwo-way analysis of variance (ANOVA), with dietary treatment and farrowing series as fixed effects, while remaining data were analyzed with dietary treatment, sex, their interaction, and farrowing series as main factors. Dietary treatments affected (P ≤ 0.049) muscle enzyme activity at both day 28, with greater citrate synthase (CS) and LDH activities and lower HAD:CS ratio in STM light portion, and lower LDH:CS ratio in STM dark portion, and 170 of age with lower HAD:CS ratio. In the starter period, CarArg pigs had greater average daily gain (P = 0.021) and average daily feed intake (P = 0.010). At slaughter, these pigs had lower (P = 0.013) glucose and greater (P = 0.022) urea serum concentrations. However, supplementing the milk replacer with carnitine and arginine had no long-term effects on growth performance, carcass composition, and meat quality of L-BtW pigs. In addition, muscle morphology and myofiber-related properties remained unaffected by the supplementation.


Breeding efforts to increase litter size in modern sows have inadvertently reduced the average birth weight of piglets, resulting in a higher number of piglets born with low-birth weight. These piglets are indeed vulnerable from birth and display relatively poor growth potential from a very early stage. For this reason, artificial rearing strategies are potentially a management option to improve the growth of these runt piglets. With an artificial rearing system, it is possible to provide specialized diets already during the suckling period, with inclusion of specific nutrients in certain concentrations suggested to improve the growth of runt piglets. Using an artificial rearing system allows for the provision of specialized diets during the suckling phase, which includes specific nutrients aimed at enhancing the growth of underdeveloped piglets. However, in the current experiment, the particular nutrients and their dosages did not significantly improve growth or other characteristics compared to the control group.


Subject(s)
Animal Feed , Arginine , Carnitine , Diet , Dietary Supplements , Animals , Carnitine/administration & dosage , Carnitine/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Male , Diet/veterinary , Arginine/pharmacology , Arginine/administration & dosage , Female , Swine/growth & development , Swine/physiology , Meat/analysis , Meat/standards , Sex Factors , Animal Nutritional Physiological Phenomena , Muscle, Skeletal/drug effects , Birth Weight/drug effects , Body Composition/drug effects
12.
Neurosci Lett ; 832: 137804, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38692559

ABSTRACT

The present study aimed to investigate the role of agmatine in the neurobiology underlying memory impairment during ethanol withdrawal in rats. Sprague-Dawley rats were subjected to a 21-day chronic ethanol exposure regimen (2.4 % w/v ethanol for 3 days, 4.8 % w/v for the next 4 days, and 7.2 % w/v for the following 14 days), followed by a withdrawal period. Memory impairment was assessed using the passive avoidance test (PAT) at 24, 48, and 72 h post-withdrawal. The ethanol-withdrawn rats displayed a significant decrease in step-through latency in the PAT, indicative of memory impairment at 72 h post-withdrawal. However, administration of agmatine (40 µg/rat) and its modulators (L-arginine, arcaine, and amino-guanidine) significantly increases the latency time in the ethanol-withdrawn rats, demonstrating the attenuation of memory impairment. Further, pretreatment with imidazoline receptor agonists enhances agmatine's effects, while antagonists block them, implicating imidazoline receptors in agmatine's actions. Neurochemical analysis in ethanol-withdrawn rats reveals dysregulated glutamate and GABA levels, which was attenuated by agmatine and its modulators. By examining the effects of agmatine administration and modulators of endogenous agmatine, the study aimed to shed light on the potential therapeutic implications of agmatinergic signaling in alcohol addiction and related cognitive deficits. Thus, the present findings suggest that agmatine administration and modulation of endogenous agmatine levels hold potential as therapeutic strategies for managing alcohol addiction and associated cognitive deficits. Understanding the neurobiology underlying these effects paves the way for the development of novel interventions targeting agmatinergic signaling in addiction treatment.


Subject(s)
Agmatine , Cognitive Dysfunction , Ethanol , Rats, Sprague-Dawley , Substance Withdrawal Syndrome , Animals , Agmatine/pharmacology , Agmatine/therapeutic use , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Rats , Biguanides/pharmacology , Glutamic Acid/metabolism , Arginine/pharmacology , gamma-Aminobutyric Acid/metabolism , Imidazoline Receptors/metabolism , Imidazoline Receptors/agonists , Avoidance Learning/drug effects
13.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696732

ABSTRACT

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Subject(s)
Arginine , Nanoparticles , Nanoparticles/chemistry , Adsorption , Arginine/chemistry , Hydrogen-Ion Concentration , Polymerization , Silicon Dioxide/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/chemical synthesis
14.
Medicina (Kaunas) ; 60(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792995

ABSTRACT

Background and Objectives: episodes of acute decompensation in chronic heart failure (ADHF), a common health problem for the growing elderly population, pose a significant socio-economic burden on the public health systems. Limited knowledge is available on both the endothelial function in and the cardio-metabolic health profile of old adults hospitalized due to ADHF. This study aimed to investigate the connection between asymmetric dimethylarginine (ADMA)-a potent inhibitor of nitric oxide-and key health biomarkers in this category of high-risk patients. Materials and Methods: this pilot study included 83 individuals with a known ADHF history who were admitted to the ICU due to acute cardiac decompensation. Selected cardiovascular, metabolic, haemogram, renal, and liver parameters were measured at admission to the ICU. Key renal function indicators (serum creatinine, sodium, and potassium) were determined again at discharge. These parameters were compared between patients stratified by median ADMA (114 ng/mL). Results: high ADMA patients showed a significantly higher incidence of ischemic cardiomyopathy and longer length of hospital stay compared to those with low ADMA subjects. These individuals exhibited significantly higher urea at admission and creatinine at discharge, indicating poorer renal function. Moreover, their lipid profile was less favorable, with significantly elevated levels of total cholesterol and HDL. However, no significant inter-group differences were observed for the other parameters measured. Conclusions: the present findings disclose multidimensional, adverse ADMA-related changes in the health risk profile of patients with chronic heart failure hospitalized due to recurrent decompensation episodes.


Subject(s)
Arginine , Biomarkers , Heart Failure , Hospitalization , Humans , Heart Failure/physiopathology , Heart Failure/complications , Heart Failure/blood , Arginine/analogs & derivatives , Arginine/blood , Male , Female , Aged , Pilot Projects , Biomarkers/blood , Hospitalization/statistics & numerical data , Aged, 80 and over , Middle Aged
15.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759626

ABSTRACT

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Subject(s)
Arginine , Cysteine , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , Proteome , Humans , Cysteine/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Proteome/metabolism , Arginine/metabolism , Mutation , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Proteomics/methods , Gene Expression Regulation, Neoplastic , Cell Survival/drug effects , RNA, Transfer/metabolism , RNA, Transfer/genetics
16.
J Hazard Mater ; 472: 134469, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38691995

ABSTRACT

The scarcity of selective adsorbents for efficient extraction and removal of microcystins (MCs) from complex samples greatly limits the precise detection and effective control of MCs. Three-dimensional covalent organic frameworks (3D COFs), characterized by their large specific surface areas and highly ordered rigid structure, are promising candidates, but suffer from lack of specific recognition. Herein, we design to engineer molecularly imprinted cavities within 3D COFs via molecularly imprinted technology, creating a novel adsorbent with exceptional selectivity, kinetics and capacity for the efficient extraction and removal of MCs. As proof-of-concept, a new CC bond-containing 3D COF, designated JNU-7, is designed and prepared for copolymerization with methacrylic acid, the pseudo template L-arginine and ethylene dimethacrylate to yield the JNU-7 based molecularly imprinted polymer (JNU-7-MIP). The JNU-7-MIP exhibits a great adsorption capacity (156 mg g-1) for L-arginine. Subsequently, the JNU-7-MIP based solid-phase extraction coupled with high performance liquid chromatography-mass spectrometry achieves low detection limit of 0.008 ng mL-1, wide linear range of 0.025-100 ng mL-1, high enrichment factor of 186, rapid extraction of 10 min, and good recoveries of 92.4%-106.5% for MC-LR. Moreover, the JNU-7-MIP can rapidly remove the MC-LR from 1 mg L-1 to levels (0.26-0.35 µg L-1) lower than the WHO recommended limit for drinking water (1 µg L-1). This work reveals the considerable potential of 3D COF based MIPs as promising adsorbents for the extraction and removal of contaminants in complex real samples.


Subject(s)
Microcystins , Molecular Imprinting , Solid Phase Extraction , Water Pollutants, Chemical , Microcystins/isolation & purification , Microcystins/chemistry , Microcystins/analysis , Adsorption , Solid Phase Extraction/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/analysis , Metal-Organic Frameworks/chemistry , Arginine/chemistry , Molecularly Imprinted Polymers/chemistry , Chromatography, High Pressure Liquid , Limit of Detection
17.
Int J Biol Macromol ; 269(Pt 1): 131985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692538

ABSTRACT

Polylactic acid (PLA) is a promising renewable polymer material with excellent biodegradability and good mechanical properties. However, the easy flammability and slow natural degradation limited its further applications, especially in high-security fields. In this work, a fully bio-based intumescent flame-retardant system was designed to reduce the fire hazard of PLA. Firstly, arginine (Arg) and phytic acid (PA) were combined through electrostatic ionic interaction, followed by the introduction of starch as a carbon source, namely APS. The UL-94 grade of PLA/APS composites reached V-0 grade by adding 3 wt% of APS and exhibited excellent anti-dripping performance. With APS addition increasing to 7 wt%, LOI value increased to 26 % and total heat release decreased from 58.4 (neat PLA) to 51.1 MJ/m2. Moreover, the addition of APS increased its crystallinity up to 83.5 % and maintained the mechanical strength of pristine PLA. Noteworthy, APS accelerated the degradation rate of PLA under submerged conditions. Compared with pristine PLA, PLA/APS showed more apparent destructive network morphology and higher mass and Mn loss, suggesting effective degradation promotion. This work provides a full biomass modification strategy to construct renewable plastic with both good flame retardancy and high degradation efficiency.


Subject(s)
Fires , Flame Retardants , Polyesters , Polyesters/chemistry , Fires/prevention & control , Phytic Acid/chemistry , Green Chemistry Technology/methods , Arginine/chemistry
18.
FASEB J ; 38(10): e23647, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38787599

ABSTRACT

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Arginine , Muscle, Skeletal , Protein-Arginine N-Methyltransferases , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Arginine/metabolism , Arginine/analogs & derivatives , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Mice , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Male , Methylation , Female , Protein Processing, Post-Translational , Mice, Inbred C57BL , Proteome/metabolism
19.
Toxins (Basel) ; 16(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38787071

ABSTRACT

Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.


Subject(s)
Endocytosis , Saponins , Animals , Mice , Saponins/metabolism , Arginine , Endosomes/metabolism , Cell Line, Tumor , Mutation , DNA Mutational Analysis , Cell Survival/drug effects
20.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38622951

ABSTRACT

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Subject(s)
Amino Acids , Fermented Foods , Swine , Animals , Female , Pregnancy , Amino Acids/metabolism , Digestion/physiology , Glutamine/metabolism , Tryptophan/metabolism , Cysteine/metabolism , Lysine/metabolism , Glycine max , Diet/veterinary , Arginine/metabolism , Serine , Animal Feed/analysis , Ileum/metabolism , Animal Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...