Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.567
Filter
1.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691892

ABSTRACT

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Subject(s)
Anti-Bacterial Agents , Arginine , Microbial Sensitivity Tests , Tryptophan , Tryptophan/chemistry , Tryptophan/pharmacology , Animals , Arginine/chemistry , Arginine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Mice , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Bacterial Infections/drug therapy , Humans , Escherichia coli/drug effects
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38703031

ABSTRACT

This study compared milk replacer either remaining unsupplemented (CON) or supplemented with 0.5 g L-carnitine plus 16.7 g L-arginine/kg (CarArg) and fed to 48 low-birth weight (L-BtW) artificially reared piglets (24 per group) from days 7 to 28 of age. Eight farrowing series were needed to complete the study. On day 28, the lightest piglets were slaughtered, and the heaviest pigs were weaned. The heaviest pigs were weaned on day 28 and offered free access to a starter (weaning to 25 kg body weight [BW]), grower (25 to 60 kg BW), and finisher diet (60 to 96 kg BW on day 170 of age). After euthanization on days 28 and 170, blood was sampled for assessment of serum metabolite and hormone concentrations, and the semitendinosus muscle (STM) was weighed, and later subjected to enzyme activity analysis and assessment of myofiber characteristics. In the 170-d-old pigs carcass and meat quality traits were assessed. Growth data were analyzed accordingtoatwo-way analysis of variance (ANOVA), with dietary treatment and farrowing series as fixed effects, while remaining data were analyzed with dietary treatment, sex, their interaction, and farrowing series as main factors. Dietary treatments affected (P ≤ 0.049) muscle enzyme activity at both day 28, with greater citrate synthase (CS) and LDH activities and lower HAD:CS ratio in STM light portion, and lower LDH:CS ratio in STM dark portion, and 170 of age with lower HAD:CS ratio. In the starter period, CarArg pigs had greater average daily gain (P = 0.021) and average daily feed intake (P = 0.010). At slaughter, these pigs had lower (P = 0.013) glucose and greater (P = 0.022) urea serum concentrations. However, supplementing the milk replacer with carnitine and arginine had no long-term effects on growth performance, carcass composition, and meat quality of L-BtW pigs. In addition, muscle morphology and myofiber-related properties remained unaffected by the supplementation.


Breeding efforts to increase litter size in modern sows have inadvertently reduced the average birth weight of piglets, resulting in a higher number of piglets born with low-birth weight. These piglets are indeed vulnerable from birth and display relatively poor growth potential from a very early stage. For this reason, artificial rearing strategies are potentially a management option to improve the growth of these runt piglets. With an artificial rearing system, it is possible to provide specialized diets already during the suckling period, with inclusion of specific nutrients in certain concentrations suggested to improve the growth of runt piglets. Using an artificial rearing system allows for the provision of specialized diets during the suckling phase, which includes specific nutrients aimed at enhancing the growth of underdeveloped piglets. However, in the current experiment, the particular nutrients and their dosages did not significantly improve growth or other characteristics compared to the control group.


Subject(s)
Animal Feed , Arginine , Carnitine , Diet , Dietary Supplements , Animals , Carnitine/administration & dosage , Carnitine/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Male , Diet/veterinary , Arginine/pharmacology , Arginine/administration & dosage , Female , Swine/growth & development , Swine/physiology , Meat/analysis , Meat/standards , Sex Factors , Animal Nutritional Physiological Phenomena , Muscle, Skeletal/drug effects , Birth Weight/drug effects , Body Composition/drug effects
3.
Neurosci Lett ; 832: 137804, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38692559

ABSTRACT

The present study aimed to investigate the role of agmatine in the neurobiology underlying memory impairment during ethanol withdrawal in rats. Sprague-Dawley rats were subjected to a 21-day chronic ethanol exposure regimen (2.4 % w/v ethanol for 3 days, 4.8 % w/v for the next 4 days, and 7.2 % w/v for the following 14 days), followed by a withdrawal period. Memory impairment was assessed using the passive avoidance test (PAT) at 24, 48, and 72 h post-withdrawal. The ethanol-withdrawn rats displayed a significant decrease in step-through latency in the PAT, indicative of memory impairment at 72 h post-withdrawal. However, administration of agmatine (40 µg/rat) and its modulators (L-arginine, arcaine, and amino-guanidine) significantly increases the latency time in the ethanol-withdrawn rats, demonstrating the attenuation of memory impairment. Further, pretreatment with imidazoline receptor agonists enhances agmatine's effects, while antagonists block them, implicating imidazoline receptors in agmatine's actions. Neurochemical analysis in ethanol-withdrawn rats reveals dysregulated glutamate and GABA levels, which was attenuated by agmatine and its modulators. By examining the effects of agmatine administration and modulators of endogenous agmatine, the study aimed to shed light on the potential therapeutic implications of agmatinergic signaling in alcohol addiction and related cognitive deficits. Thus, the present findings suggest that agmatine administration and modulation of endogenous agmatine levels hold potential as therapeutic strategies for managing alcohol addiction and associated cognitive deficits. Understanding the neurobiology underlying these effects paves the way for the development of novel interventions targeting agmatinergic signaling in addiction treatment.


Subject(s)
Agmatine , Cognitive Dysfunction , Ethanol , Rats, Sprague-Dawley , Substance Withdrawal Syndrome , Animals , Agmatine/pharmacology , Agmatine/therapeutic use , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Rats , Biguanides/pharmacology , Glutamic Acid/metabolism , Arginine/pharmacology , gamma-Aminobutyric Acid/metabolism , Imidazoline Receptors/metabolism , Imidazoline Receptors/agonists , Avoidance Learning/drug effects
4.
Front Immunol ; 15: 1357072, 2024.
Article in English | MEDLINE | ID: mdl-38638435

ABSTRACT

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Subject(s)
Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
5.
BMC Vet Res ; 20(1): 167, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689278

ABSTRACT

Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through ß-catenin and mTOR pathways.


Subject(s)
Arginine , Cell Differentiation , Cell Proliferation , TOR Serine-Threonine Kinases , Trophoblasts , beta Catenin , Animals , Arginine/pharmacology , Arginine/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism , Swine , Cell Proliferation/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Differentiation/drug effects , beta Catenin/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects , Nitric Oxide/metabolism , Cell Line
6.
mSystems ; 9(5): e0024624, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564708

ABSTRACT

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Subject(s)
Arginine , Colon , Gastrointestinal Microbiome , Intestinal Mucosa , Mucins , Spermine , Spermine/metabolism , Mucins/metabolism , Arginine/metabolism , Arginine/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Animals , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Male , Mice , Lactobacillus/metabolism , Humans , Dietary Fiber/metabolism , Mice, Inbred C57BL
7.
Food Chem ; 450: 139392, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640546

ABSTRACT

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Subject(s)
Arginine , Monophenol Monooxygenase , Pyrones , Solanum tuberosum , Pyrones/pharmacology , Pyrones/chemistry , Arginine/chemistry , Arginine/analogs & derivatives , Arginine/pharmacology , Solanum tuberosum/chemistry , Solanum tuberosum/growth & development , Monophenol Monooxygenase/metabolism , Food Preservation/methods , Catechol Oxidase/metabolism , Food Preservatives/pharmacology , Food Preservatives/chemistry , Bacteria/drug effects , Bacteria/genetics
8.
Int J Radiat Biol ; 100(6): 849-864, 2024.
Article in English | MEDLINE | ID: mdl-38683545

ABSTRACT

PURPOSE: Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS: Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.


Subject(s)
Arginine , Creatine , Dietary Supplements , Radiation-Protective Agents , Arginine/pharmacology , Radiation-Protective Agents/pharmacology , Creatine/pharmacology , Animals , Humans , Oxidative Stress/drug effects , Oxidative Stress/radiation effects
9.
J Dent ; 145: 104997, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621525

ABSTRACT

OBJECTIVE: To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS: Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS: 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS: 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE: The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.


Subject(s)
Arginine , Biofilms , Cariostatic Agents , Dental Enamel , Microscopy, Confocal , Saliva , Sodium Fluoride , Tooth Demineralization , Biofilms/drug effects , Arginine/pharmacology , Sodium Fluoride/pharmacology , Dental Enamel/drug effects , Dental Enamel/microbiology , Cattle , Animals , Tooth Demineralization/prevention & control , Tooth Demineralization/microbiology , Cariostatic Agents/pharmacology , Saliva/microbiology , Saliva/metabolism , Saliva/drug effects , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Calcium/analysis , Calcium/metabolism , Streptococcus/drug effects , Xanthenes/pharmacology , Colony Count, Microbial , Oxazines/pharmacology
10.
Biochim Biophys Acta Biomembr ; 1866(5): 184323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614236

ABSTRACT

Protamine, an antimicrobial protein derived from salmon sperm with a molecular weight of approximately 5 kDa, is composed of 60-70 % arginine and is a highly charged protein. Here, we investigated the mechanism of antimicrobial action of protamine against Cutibacterium acnes (C. acnes) focusing on its rich arginine content and strong positive charge. Especially, we focused on the attribution of dual mechanisms of antimicrobial protein, including membrane disruption or interaction with intracellular components. We first determined the dose-dependent antibacterial activity of protamine against C. acnes. In order to explore the interaction between bacterial membrane and protamine, we analyzed cell morphology, zeta potential, membrane permeability, and the composition of membrane fatty acid. In addition, the localization of protamine in bacteria was observed using fluorescent-labeled protamine. For investigation of the intracellular targets of protamine, bacterial translation was examined using a cell-free translation system. Based on our results, the mechanism of the antimicrobial action of protamine against C. acnes is as follows: 1) electrostatic interactions with the bacterial cell membrane; 2) self-internalization into the bacterial cell by changing the composition of the bacterial membrane; and 3) inhibition of bacterial growth by blocking translation inside the bacteria. However, owing to its strong electric charge, protamine can also interact with DNA, RNA, and other proteins inside the bacteria, and may inhibit various bacterial life processes beyond the translation process.


Subject(s)
Arginine , Cell Membrane , Protamines , Protamines/chemistry , Protamines/pharmacology , Protamines/metabolism , Arginine/chemistry , Arginine/pharmacology , Arginine/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Static Electricity , Cell Membrane Permeability/drug effects , Microbial Sensitivity Tests
11.
J Dent ; 145: 104992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599563

ABSTRACT

OBJECTIVES: The objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. METHODS: Arg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. RESULTS: TEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. CONCLUSIONS: The novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.


Subject(s)
Anti-Bacterial Agents , Arginine , Biofilms , Nanoparticles , Resin Cements , Silicon Dioxide , Streptococcus mutans , Arginine/chemistry , Arginine/pharmacology , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Streptococcus mutans/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Resin Cements/chemistry , Humans , Dental Cements/chemistry , Dental Cements/pharmacology , Porosity , Materials Testing , Microscopy, Electron, Transmission , Dental Bonding , Orthodontic Brackets , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry
12.
Int J Biol Macromol ; 264(Pt 1): 130478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428781

ABSTRACT

In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/drug therapy , Glycation End Products, Advanced/metabolism , Maillard Reaction , Antioxidants/pharmacology , Serum Albumin/chemistry , Arginine/pharmacology
13.
J Tissue Viability ; 33(2): 239-242, 2024 May.
Article in English | MEDLINE | ID: mdl-38448329

ABSTRACT

INTRODUCTION: Various nutrients play a physiological role in the healing process of pressure ulcers (PUs). Nutritional interventions include the administration of enteral nutritional supplements and formulas containing arginine, glutamine, and micronutrients. The aim of this systematic review is to evaluate the effectiveness of enteral nutritional supplements and formulas containing arginine and glutamine on wound-related outcomes. These include (1) time to healing, (2) changes in wound size, (3) local wound infection, (4) PU recurrence, and (5) PU-related pain. MATERIALS AND METHODS: This protocol was developed according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). A search will be conducted in the Cochrane Library, EMBASE, PubMed (MEDLINE), CINAHL (EBSCOhost interface) and Web of Science. In addition, a manual search will be conducted to identify relevant records. Except for systematic reviews, no restrictions will be placed on the study design, the population studied or the setting. Studies that do not address PUs, in vitro studies and studies that do not report wound-related outcomes will be excluded. Study selection, risk of bias assessment and data extraction will be performed independently by three researchers. Depending on the extent of heterogeneity of interventions, follow-up time and populations, results will be summarised either by meta-analysis or narrative synthesis. CONCLUSIONS: This is the first systematic review to identify, evaluate and summarise the current evidence for enteral arginine and glutamine supplementation on wound-related outcomes in PUs. The review will provide a solid basis for deriving valid and clinically relevant conclusions in this area.


Subject(s)
Arginine , Glutamine , Pressure Ulcer , Systematic Reviews as Topic , Wound Healing , Pressure Ulcer/drug therapy , Arginine/therapeutic use , Arginine/pharmacology , Arginine/administration & dosage , Glutamine/therapeutic use , Glutamine/pharmacology , Glutamine/administration & dosage , Humans , Wound Healing/drug effects , Wound Healing/physiology
14.
J Therm Biol ; 121: 103835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531186

ABSTRACT

A total of 245 hens and 35 cocks (32 weeks age) were assigned to seven treatment groups (five replicates with seven hens and one cock) to investigate the effect of dietary electrolyte balance (DEB) and arginine to lysine ratio (Arg/Lys) on birds' physiological and biochemical traits under cyclic heat stress (CHS) condition. Birds were housed in an environmentally controlled facility having four sectors. The first group (positive control, PC) was kept under thermoneutral conditions and fed diet with DEB of 180 mEq and Arg/Lys of 1.25, whereas the other six treatments were kept in the second sector under CHS and fed diet with DEB and Arg/Lys equal to: 180 mEq and 1.25 (negative control, NC); 250 mEq and 1.25; 320 mEq and 1.25; 180 mEq and 1.37; 250 mEq and 1.37; 320 mEq and 1.37, respectively. Hens on NC group had significantly decreased red blood cells (RBCs), white blood cells (WBCs) and its fractions. The groups fed different DEB and Arg/Lys in diet significantly enhanced the blood parameters and plasma lipid profile compared NC group. Hens under CHS fed on 250 and 320 DEB with 1.37 Arg/Lys recorded the lowest concentration of low-density lipoprotein (LDL) compared with the other groups. Triiodothyronine (T3) activity was not differed among groups, while T4 activity in layer exposed to CHS (NC group) recorded the highest activity compared to PC. From findings, it can be concluded that laying hens fed a diet having DEB 250 mEq with 1.37 Arg/Lys could be successfully applied to counteract the adverse effect of CHS and to improve blood hematological and biochemical traits, antioxidants, and immunity response.


Subject(s)
Arginine , Chickens , Heat-Shock Response , Lysine , Animals , Chickens/immunology , Chickens/physiology , Chickens/blood , Arginine/pharmacology , Arginine/administration & dosage , Female , Lysine/administration & dosage , Lysine/pharmacology , Antioxidants/metabolism , Water-Electrolyte Balance , Animal Feed/analysis , Diet/veterinary
15.
Am J Physiol Endocrinol Metab ; 326(5): E673-E680, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38446636

ABSTRACT

Residual beta cells are present in most patients with longstanding type 1 diabetes but it is unknown whether these beta cells react normally to different stimuli. Moreover a defect in proinsulin conversion and abnormal alpha cell response are also part of the islet dysfunction. A three-phase [euglycemia, hyperglycemia, and hyperglycemia + glucagon-like peptide 1 (GLP-1)] clamp was performed in patients with longstanding type 1 diabetes. Intravenous arginine boluses were administered at the end of each phase. On another day, a mixed meal stimulation test with a subsequent intravenous arginine bolus was performed. C-peptide was detectable in a subgroup of subjects at baseline (2/15) or only after stimulation (3/15). When detectable, C-peptide increased 2.9-fold [95% CI: 1.2-7.1] during the hyperglycemia phase and 14.1-fold [95% CI: 3.1-65.2] during the hyperglycemia + GLP-1 phase, and 22.3-fold [95% CI: 5.6-89.1] during hyperglycemia + GLP-1 + arginine phase when compared with baseline. The same subset of patients with a C-peptide response were identified during the mixed meal stimulation test as during the clamp. There was an inhibition of glucagon secretion (0.72-fold, [95% CI: 0.63-0.84]) during the glucose clamp irrespective of the presence of detectable beta cell function. Proinsulin was only present in a subset of subjects with detectable C-peptide (3/15) and proinsulin mimicked the C-peptide response to the different stimuli when detectable. Residual beta cells in longstanding type 1 diabetes respond adequately to different stimuli and could be of clinical benefit.NEW & NOTEWORTHY If beta cell function is detectable, the beta cells react relatively normal to the different stimuli except for the first phase response to intravenous glucose. An oral mixed meal followed by an intravenous arginine bolus can identify residual beta cell function/mass as well as the more commonly used glucose potentiated arginine-induced insulin secretion during a hyperglycemic clamp.


Subject(s)
Arginine , C-Peptide , Diabetes Mellitus, Type 1 , Food, Formulated , Glucagon-Like Peptide 1 , Glucose , Islets of Langerhans , Adult , Female , Humans , Male , Middle Aged , Arginine/administration & dosage , Arginine/pharmacology , Blood Glucose/metabolism , C-Peptide/blood , C-Peptide/metabolism , Diabetes Mellitus, Type 1/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/metabolism , Glucose/administration & dosage , Glucose/metabolism , Glucose Clamp Technique , Hyperglycemia/metabolism , Insulin/metabolism , Insulin/administration & dosage , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects
16.
Eur J Med Chem ; 268: 116224, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387338

ABSTRACT

The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.


Subject(s)
Anti-Bacterial Agents , Molecular Dynamics Simulation , Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Arginine/pharmacology , Bacteria , Microbial Sensitivity Tests
17.
ACS Appl Mater Interfaces ; 16(8): 9640-9655, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364050

ABSTRACT

The successful treatment of diabetic wounds requires strategies that promote anti-inflammation, angiogenesis, and re-epithelialization of the wound. Excessive oxidative stress in diabetic ulcers (DUs) inhibits cell proliferation and hinders timely vascular formation and macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2, resulting in a persistent inflammatory environment and a nonhealing wound. We designed arginine-nanoenzyme (FTA) with mimic-catalase and arginine-loading. 2,3,4-trihydroxy benzaldehyde and arginine (Arg) were connected by a Schiff base bond, and the nanoassembly of Arg to FTA was driven by the coordination force between a ferric ion and polyphenol and noncovalent bond force such as a hydrogen bond. FTA could remove excess reactive oxygen species at the wound site in situ and convert it to oxygen to improve hypoxia. Meanwhile, Arg was released and catalytically metabolized by NO synthase in M1 to promote vascular repair in the early phase. In the late phase, the metabolite of Arg catalyzed by arginase in M2 was mainly ornithine, which played a vital role in promoting tissue repair, which implemented angiogenesis timely and prevented hypertrophic scars. Mechanistically, FTA activated the cAMP signaling pathway combined with reducing inflammation and ameliorating angiogenesis, which resulted in excellent therapeutic effects on a DU mice model.


Subject(s)
Arginine , Diabetes Mellitus, Experimental , Mice , Animals , Arginine/pharmacology , Arginine/therapeutic use , Angiogenesis , Diabetes Mellitus, Experimental/drug therapy , Wound Healing , Re-Epithelialization
18.
Anticancer Res ; 44(3): 1201-1208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423672

ABSTRACT

BACKGROUND/AIM: Enzyme-mediated grafting of poly (gallic acid) (PGAL) and L-arginine and a-L-lysine onto PGAL produces reactive oxygen species (ROS)-suppressor multiradical molecules with low cytotoxicity, high thermostability and water solubility with cancer treatment potential. This study examined the anticancer effects of these molecules in hepatic (HepG2, ATCC HB-8065), breast (MCF7, ATCC HTB-22), and prostate (PC-3, ATCC CRL-1435 and DU 145, ATCC HTB-81) cancer cell lines, as well as in fibroblasts from healthy human skin as control cells. MATERIALS AND METHODS: PGAL was synthesized by the oxidative polymerization of the naturally abundant GA using laccase from Trametes versicolor. Insertions of amino acids L-arginine and α-L-lysine on the PGAL chain were carried out by microwave. The cells of dermal fibroblast (Fb) were obtained from primary skin cultures and isolated from skin biopsies. The cancer cells lines of hepatic (HepG2), breast (MCF7), and prostate (PC-3, DU 145) were obtained from ATCC. The viability of the cancer cells and the primary culture was obtained by the MTT assay. Proliferation was demonstrated by crystal violet assay. Cell migration was determined by Wound healing assay. Finally, cell cycle analysis was carried out with cells. RESULTS: The results show that 200 µg/ml of PGAL cultured in vitro with prostate cancer cells decreased viability, proliferation, and migration, as well as arrested cells in the G1 and S phases of the cell cycle. In contrast, the dermal fibroblasts and the hepatic line remained unaffected. The random grafting of L-Arg and a-L-Lys onto the PGAL chain also decreased the viability of prostate cancer cells. CONCLUSION: PGAL and PGAL-grafted amino acids are potential adjuvants for prostate cancer treatment, with improved physicochemical characteristics compared to GA.


Subject(s)
Gallic Acid , Prostatic Neoplasms , Salicylates , Male , Humans , Gallic Acid/pharmacology , Lysine , Trametes , Prostatic Neoplasms/pathology , MCF-7 Cells , Arginine/pharmacology , Cell Proliferation
19.
Int J Food Microbiol ; 413: 110611, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38308880

ABSTRACT

In the present study, the synergistic bactericidal effect and mechanism of ultrasound (US) combined with Lauroyl Arginate Ethyl (LAE) against Salmonella Typhimurium were investigated. On this basis, the effect of US+LAE treatment on the washing of S. Typhimurium on the surface of onions and on the physical and chemical properties of onion during fresh-cutting and storage were studied. The results showed that treatment with US+LAE could significantly (P < 0.05) reduce the number of S. Typhimurium compared to US and LAE treatments alone, especially the treatment of US+LAE (230 W/cm2, 8 min, 71 µM) reduced S. Typhimurium by 8.82 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release and N-phenyl-l-naphthylamine (NPN) assays demonstrated that US+LAE disrupted the integrity and permeability of S. Typhimurium cell membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+LAE exacerbated oxidative stress and lipid peroxidation in cell membranes. Field emission scanning electron microscopy (FESEM) demonstrated that US+LAE treatment caused loss of cellular contents and led to cell crumpling and even lost the original cell morphology. US+LAE treatment caused a significant (P < 0.05) decrease in the number of S. Typhimurium on onions, but there was no significant (P > 0.05) effect on the color, hardness, weight and ascorbic acid content of onions. This study elucidated the synergistic antibacterial mechanism of US+LAE and verified the feasibility of bactericidal effect on the surface of onions, providing a theoretical basis for improving the safety of fresh produce in the food industry and to propose a new way to achieve the desired results.


Subject(s)
Onions , Salmonella typhimurium , Anti-Bacterial Agents/pharmacology , Preservation, Biological , Microscopy, Electron, Scanning , Arginine/pharmacology
20.
Hypertension ; 81(4): 764-775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226470

ABSTRACT

BACKGROUND: Increased vasoreactivity due to reduced endothelial NO bioavailability is an underlying feature of cardiovascular disease, including hypertension. In small resistance arteries, declining NO enhances vascular smooth muscle (VSM) reactivity partly by enabling rapid depolarizing Ca2+-based spikes that underlie vasospasm. The endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) is metabolized by DDAH1 (dimethylarginine dimethylaminohydrolase 1) and elevated in cardiovascular disease. We hypothesized ADMA might enable VSM spikes and vasospasm by reducing NO bioavailability, which is opposed by DDAH1 activity and L-arginine. METHODS: Rat isolated small mesenteric arteries and myogenic rat-isolated intraseptal coronary arteries (RCA) were studied using myography, VSM intracellular recording, Ca2+ imaging, and DDAH1 immunolabeling. Exogenous ADMA was used to inhibit NO synthase and a selective DDAH1 inhibitor, NG-(2-methoxyethyl) arginine, to assess the functional impact of ADMA metabolism. RESULTS: ADMA enhanced rat-isolated small mesenteric arteries vasoreactivity to the α1-adrenoceptor agonist, phenylephrine by enabling T-type voltage-gated calcium channel-dependent depolarizing spikes. However, some endothelium-dependent NO-vasorelaxation remained, which was sensitive to DDAH1-inhibition with NG-(2-methoxyethyl) arginine. In myogenically active RCA, ADMA alone stimulated depolarizing Ca2+ spikes and marked vasoconstriction, while NO vasorelaxation was abolished. DDAH1 expression was greater in rat-isolated small mesenteric arteries endothelium compared with RCA, but low in VSM of both arteries. L-arginine prevented depolarizing spikes and protected NO-vasorelaxation in rat-isolated small mesenteric artery and RCA. CONCLUSIONS: ADMA increases VSM electrical excitability enhancing vasoreactivity. Endothelial DDAH1 reduces this effect, and low levels of DDAH1 in RCAs may render them susceptible to endothelial dysfunction contributing to vasospasm, changes opposed by L-arginine.


Subject(s)
Arginine/analogs & derivatives , Cardiovascular Diseases , Rats , Animals , Coronary Vessels/metabolism , Arginine/pharmacology , Arginine/metabolism , Nitric Oxide Synthase , Amidohydrolases/metabolism , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...