Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675951

ABSTRACT

Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.


Subject(s)
Armillaria , Fungal Viruses , Genome, Viral , Phylogeny , RNA, Viral , Czech Republic , Armillaria/genetics , Armillaria/virology , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , RNA, Viral/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Plant Diseases/virology , Plant Diseases/microbiology , Sequence Analysis, RNA
2.
Sci Rep ; 11(1): 7336, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795735

ABSTRACT

Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long-living clones that are considered as one of the largest organisms on earth and are capable of long-range spore-mediated transfer as well as vegetative spread by drought-resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high-throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three different species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative-sense RNA viruses and positive-sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named "ambiviruses" with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus effects on host growth and phenotype using isogenic virus-infected and virus-free strains.


Subject(s)
Armillaria/metabolism , Armillaria/virology , Fungi/metabolism , Plant Diseases/microbiology , Plant Diseases/virology , Plant Roots/microbiology , Plant Roots/virology , RNA Viruses/metabolism , Computational Biology/methods , Contig Mapping , Finland , Genome , Genome, Viral , Phylogeny , Russia , Siberia , South Africa , Species Specificity , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...