Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.952
Filter
1.
Genes (Basel) ; 15(5)2024 05 17.
Article in English | MEDLINE | ID: mdl-38790265

ABSTRACT

The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.


Subject(s)
Aromatase , Sex Ratio , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Female , Male , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Aromatase/genetics , Aromatase/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Sex Differentiation/genetics , Oocytes/metabolism , Oocytes/growth & development
2.
J Ethnopharmacol ; 331: 118279, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705425

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY: The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS: Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS: Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS: This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.


Subject(s)
Aromatase , Estrogens , Granulosa Cells , Leonurus , Luteolin , Polycystic Ovary Syndrome , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Luteolin/pharmacology , Luteolin/isolation & purification , Animals , Humans , Aromatase/metabolism , Aromatase/genetics , Leonurus/chemistry , Estrogens/pharmacology , Estrogens/biosynthesis , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/isolation & purification
3.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38717933

ABSTRACT

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Subject(s)
Aromatase , Placenta , RNA Stability , Transcription Factor AP-2 , Humans , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Aromatase/genetics , Aromatase/metabolism , Female , Placenta/metabolism , Placenta/drug effects , Pregnancy , RNA Stability/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Line, Tumor , Histones/metabolism
4.
Mar Biotechnol (NY) ; 26(3): 423-431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649627

ABSTRACT

This study is the first investigation for using sex-related gene expression in tail fin tissues of seabass as early sex determination without killing the fish. The European seabass (Dicentrarchus labrax) is gonochoristic and lacks distinguishable sex chromosomes, so, sex determination is referred to molecular actions for some sex-related genes on autosomal chromosomes which are well known such as cyp19a1a, dmrt1a, and dmrt1b genes which play crucial role in gonads development and sex differentiation. cyp19a1a is expressed highly in females for ovarian development and dmrt1a and dmrt1b are for testis development in males. In this study, we evaluated the difference in the gene expression levels of studied genes by qPCR in tail fins and gonads. We then performed discriminant analysis (DA) using morphometric traits and studied gene expression parameters as predictor tools for fish sex. The results revealed that cyp19a1a gene expression was significantly higher in future females' gonads and tail fins (p ≥ 0.05). Statistically, cyp19a1a gene expression was the best parameter to discriminate sex even the hit rate of any other variable by itself could not correctly classify 100% of the fish sex except when it was used in combination with cyp19a1a. In contrast, Dmrt1a gene expression was higher in males than females but there were difficulties in analyzing dmrt1a and dmrt1b expressions in the tail because levels were low. So, it could be used in future research to differentiate and determine the sex of adult fish using the cyp19a1a gene expression marker without killing or sacrificing fish.


Subject(s)
Animal Fins , Aromatase , Bass , Transcription Factors , Animals , Bass/genetics , Bass/metabolism , Bass/growth & development , Male , Female , Animal Fins/metabolism , Aromatase/genetics , Aromatase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Sex Determination Processes/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Ovary/metabolism , Gonads/metabolism , Gonads/growth & development , Gene Expression Regulation, Developmental , Sex Differentiation/genetics
5.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38582176

ABSTRACT

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Subject(s)
Aromatase , Brain , Pituitary Gland , Sex Differentiation , Animals , Sex Differentiation/genetics , Sex Differentiation/physiology , Male , Aromatase/genetics , Aromatase/metabolism , Female , Brain/metabolism , Pituitary Gland/metabolism , Anguilla/genetics , Anguilla/metabolism , Anguilla/growth & development , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism , Gonads/metabolism , Gonads/growth & development
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396796

ABSTRACT

Estrogen, well known as a female hormone, is synthesized primarily by ovarian aromatase. However, extra-glandular tissues also express aromatase and produce estrogen. It is noteworthy that aromatase in gastric parietal cells begins expression around 20 days after birth and continues secreting considerable amounts of estrogen into the portal vein throughout life, supplying it to the liver. Estrogen, which is secreted from the stomach, is speculated to play a monitoring role in blood triglyceride, and its importance is expected to increase. Nevertheless, the regulatory mechanisms of the aromatase expression remain unclear. This study investigated the influence of transforming growth factor α (TGFα) on gastric aromatase expression during postnatal development. The administration of TGFα (50 µg/kg BW) to male Wistar rats in the weaning period resulted in enhanced aromatase expression and increased phosphorylated ERK1+2 in the gastric mucosa. By contrast, administration of AG1478 (5 mg/kg BW), a protein tyrosine kinase inhibitor with high selectivity for the epidermal growth factor receptor and acting as an antagonist of TGFα, led to the suppression of aromatase expression. In fact, TGFα expression in the gastric fundic gland isthmus began around 20 days after birth in normal rats as did that of aromatase, which indicates that TGFα might induce the expression of aromatase in the parietal cells concomitantly.


Subject(s)
Parietal Cells, Gastric , Transforming Growth Factor alpha , Rats , Male , Female , Animals , Parietal Cells, Gastric/metabolism , Transforming Growth Factor alpha/metabolism , Rats, Wistar , Aromatase/genetics , Aromatase/metabolism , Gastric Mucosa/metabolism , Estrogens/metabolism
7.
PLoS One ; 19(2): e0296390, 2024.
Article in English | MEDLINE | ID: mdl-38315701

ABSTRACT

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


Subject(s)
46, XX Disorders of Sex Development , Aromatase , Bone Marrow Transplantation , Gynecomastia , Infertility, Male , Metabolism, Inborn Errors , Mice , Animals , Male , Aromatase/genetics , Aromatase/metabolism , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Porosity , Mice, Inbred C57BL , Estrogens , Estradiol , Bone Marrow Cells/metabolism , Spine/metabolism , Mice, Knockout
8.
Mar Pollut Bull ; 201: 116187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412796

ABSTRACT

Naphthalene (NAP) and phenanthrene (PHE) are prevalent Polycyclic Aromatic Hydrocarbons (PAHs) in the environment. High-Performance Liquid Chromatography (HPLC) analysis was performed on marine water samples (n = 57) collected from 19 locations. Molecular screening of the aromatase (CYP19) gene expression was examined using quantitative Reverse Transcriptase PCR (qRT-PCR). The findings of the study showed a significant range of naphthalene concentrations along the coastline, spanning from 1.70 to 15.05 mg/L, where phenanthrene concentrations varied from undetectable to a maximum of 5.36 mg/L. The relative expression of the CYP19 gene ranged from 0.5 to 13.9 in the sampling sites. The ANOVA analysis showed a significant positive correlation (p < 0.05) between the concentrations of PAHs and CYP19 gene expression. The study concluded that the CYP19 gene could be useful in detecting contaminants such as naphthalene and phenanthrene in water. This study may help develop effective strategies to detect and mitigate PAH pollution in coastal areas.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Aromatase/genetics , Sri Lanka , Water Pollutants, Chemical/analysis , Naphthalenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Phenanthrenes/analysis , Biomarkers , Water/analysis
9.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338720

ABSTRACT

Estrogens play critical roles in embryonic development, gonadal sex differentiation, behavior, and reproduction in vertebrates and in several human cancers. Estrogens are synthesized from testosterone and androstenedione by the endoplasmic reticulum membrane-bound P450 aromatase/cytochrome P450 oxidoreductase complex (CYP19/CPR). Here, we report the characterization of novel mammalian CYP19 isoforms encoded by CYP19 gene copies. These CYP19 isoforms are all defined by a combination of mutations in the N-terminal transmembrane helix (E42K, D43N) and in helix C of the catalytic domain (P146T, F147Y). The mutant CYP19 isoforms show increased androgen conversion due to the KN transmembrane helix. In addition, the TY substitutions in helix C result in a substrate preference for androstenedione. Our structural models suggest that CYP19 mutants may interact differently with the membrane (affecting substrate uptake) and with CPR (affecting electron transfer), providing structural clues for the catalytic differences.


Subject(s)
Aromatase , Animals , Female , Humans , Pregnancy , Amino Acids , Androstenedione , Aromatase/genetics , Aromatase/metabolism , Estrogens/metabolism , Mammals/metabolism , Protein Isoforms , Protein Structure, Tertiary/genetics , Protein Structure, Secondary/genetics
10.
Biochem Pharmacol ; 222: 116095, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423186

ABSTRACT

Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.


Subject(s)
Breast Neoplasms , PPAR gamma , Female , Humans , PPAR gamma/genetics , PPAR gamma/metabolism , Aromatase/genetics , Aromatase/metabolism , Adipose Tissue/metabolism , Estrogens/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Adipogenesis
11.
J Clin Endocrinol Metab ; 109(7): 1765-1772, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38227777

ABSTRACT

CONTEXT: Approximately 150 patients with juvenile gigantomastia have been reported in the literature but the underlying biologic mechanisms remain unknown. OBJECTIVE: To conduct extensive clinical, biochemical, immunochemical, and genetic studies in 3 patients with juvenile gigantomastia to determine causative biologic factors. METHODS: We examined clinical effects of estrogen by blockading estrogen synthesis or its action. Breast tissue aromatase expression and activity were quantitated in 1 patient and 5 controls. Other biochemical markers, including estrogen receptor α (ERα), cyclin D1 and E, p-RB, p-MAPK, p-AKT, BCL-2, EGF-R, IGF-IR ß, and p-EGFR were assayed by Western blot. Immunohistochemical analyses for aromatase, ERα and ß, PgR, Ki67, sulfotransferase, estrone sulfatase, and 17ßHD were performed in all 3 patients. The entire genomes of the mother, father, and patient in the 3 families were sequenced. RESULTS: Blockade of estrogen synthesis or action in patients resulted in demonstrable clinical effects. Biochemical studies on fresh frozen tissue revealed no differences between patients and controls, presumably due to tissue dilution from the large proportion of stroma. However, immunohistochemical analysis of ductal breast cells in the 3 patients revealed a high percent of ERα (64.1% ± 7.8% vs reference women 9.6%, range 2.3-15%); aromatase score of 4 (76%-100% of cells positive vs 30.4% ± 5.6%); PgR (69.5% ± 15.2% vs 6.0%, range 2.7%-11.9%) and Ki67 (23.7% ± 0.54% vs 4.2%). Genetic studies were inconclusive although some intriguing variants were identified. CONCLUSION: The data implicate an important biologic role for ERα to increase tissue sensitivity to estrogen and aromatase to enhance local tissue production as biologic factors involved in juvenile gigantomastia.


Subject(s)
Aromatase , Breast , Estrogen Receptor alpha , Hypertrophy , Humans , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Aromatase/genetics , Aromatase/metabolism , Breast/pathology , Breast/metabolism , Breast/abnormalities , Female , Adolescent , Estrogens/metabolism , Male
12.
Ann N Y Acad Sci ; 1532(1): 73-82, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240562

ABSTRACT

Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.


Subject(s)
Androgen-Insensitivity Syndrome , Cichlids , Humans , Animals , Male , Aromatase/genetics , Aromatase/metabolism , Cichlids/genetics , Cichlids/metabolism , Hypothalamus , Estradiol/metabolism , Mammals/metabolism
13.
Fish Physiol Biochem ; 50(2): 575-588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216846

ABSTRACT

To investigate the regulatory role of the cyp19a1b aromatase gene in the sexual differentiation of largemouth bass (Micropterus salmoides, LMB), we obtained the full-length cDNA sequence of cyp19a1b using rapid amplification of cDNA ends technique. Tissue expression characteristics and feedback with 17-ß-estradiol (E2) were determined using quantitative real-time PCR (qRT-PCR), while gonad development was assessed through histological section observations. The cDNA sequence of LMB cyp19a1b was found to be1950 base pairs (bp) in length, including a 5' untranslated region of 145 bp, a 3' untranslated region of 278 bp, and an open reading frame encoding a protein consisting of 1527 bp that encoded 508 amino acids. The qRT-PCR results indicated that cyp19a1b abundantly expressed in the brain, followed by the gonads, and its expression in the ovaries was significantly higher than that observed in the testes (P < 0.05). After feeding fish with E2 for 30 days, the expression of cyp19a1b in the pseudo-female gonads (XY-F) was significantly higher than that in males (XY-M) (P < 0.05), whereas expression did not differ significantly between XX-F and XY-F fish (P > 0.05). Although the expression of cyp19a1b in XY-F and XX-F fish was not significantly different after 60 days (P>0.05), both exhibited significantly higher levels than that of XY-M fish (P<0.05). Histological sections analysis showed the presence of oogonia in both XY-F and XX-F fish at 30 days, while spermatogonia were observed in XY-M fish. At 60 days, primary oocytes were abundantly observed in both XY-F and XX-F fish, while a few spermatogonia were visible in XY-M fish. At 90 days, the histological sections' results showed that a large number of oocytes were visible in XY-F and XX-F fish. Additionally, the gonads of XY-M fish contained numerous spermatocytes. These results suggest that cyp19a1b plays a pivotal role in the development of ovaries and nervous system development in LMB.


Subject(s)
Bass , Male , Female , Animals , Bass/genetics , Bass/metabolism , Aromatase/genetics , Aromatase/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Ovary/metabolism
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 829-841, 2024 02.
Article in English | MEDLINE | ID: mdl-37515736

ABSTRACT

Acrylamide (ACR) is a toxic chemical frequently encountered in daily life, posing health risks. This study aimed to elucidate the molecular-level mechanism of ACR's toxic effects on testicles and investigate whether Vitamin E can mitigate these effects. A total of 40 adult pregnant rats were utilized, divided into four groups: Control, ACR, Vitamin E, and ACR + Vitamin E. ACR and Vitamin E were administered to the mother rats during pregnancy and lactation, and to the male offspring until the 8th week post-birth. Serum hormone levels, oxidant-antioxidant parameters, histopathological examination of testicular tissue, and mRNA and protein levels of the testicular and liver aromatase gene were analyzed. Spermiogram analysis was conducted on the collected sperm samples from the male offspring. The results revealed that ACR exposure adversely affected hormone levels, oxidant-antioxidant parameters, histological findings, as well as aromatase gene and protein expressions. However, Vitamin E administration effectively prevented the toxic effects of ACR. These findings demonstrate that ACR application significantly impairs the reproductive performance of male offspring rats by increasing liver aromatase activity.


Subject(s)
Antioxidants , Vitamin E , Pregnancy , Female , Rats , Male , Animals , Vitamin E/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Testis , Acrylamide/toxicity , Acrylamide/metabolism , Aromatase/genetics , Aromatase/metabolism , Aromatase/pharmacology , Semen/metabolism , Oxidative Stress , Oxidants/metabolism , Oxidants/pharmacology , Hormones/pharmacology
15.
J Steroid Biochem Mol Biol ; 237: 106439, 2024 03.
Article in English | MEDLINE | ID: mdl-38048918

ABSTRACT

Endometriosis was claimed to negatively affect the intrafollicular environment, hindering oocyte competence. Previous studies evaluated expression levels of cytochrome P450 aromatase (CYP19A) in granulosa and cumulus oophorus cells collected from endometriosis women, but results are controversial. To further investigate the intrafollicular environment whose alteration may potentially disturb ovarian steroidogenesis in endometriosis, gene expression of CYP19A and of its upstream enzymes, StAR and 3ßHSD was assessed in luteinized granulosa cells isolated from follicular fluids (FF) collected during Assisted Reproduction Technology (ART) procedures in women with stage III-IV disease and from subjects without the condition. In a subgroup of patients, cumulus oophorus cells (COCs) were also assessed for CYP19A, StAR and 3ßHSD gene expression. No difference in mRNA expression of CYP19A1, StAR and 3ßHSD in both granulosa cells and COCs was observed between the two groups of patients. No significant difference was also found between estradiol FF levels detected in endometriosis patients (median=873, IQR=522-1221 ng/ml)) and control patients (median=878, IQR=609-1137 ng/ml). To gain more insight into the intrafollicular regulation of CYP19A in patients with endometriosis, associations between expression of the analyzed genes, systemic and follicular 17ß-estradiol levels and ART outcomes were assessed. While in the control group, levels of CYP19A1, StAR and 3ßHSD transcripts significantly correlated with follicular estradiol levels (adjusted R² of 0.60), no significant association was detected in affected women (adjusted R² of 0.23). After stratification of the populations based on the presence of the disease, CYP19A1 expression was shown to correlate with the number of oocytes retrieved [ß:- 1.214;95%CI: - 2.085 - (-0.343); p = 0.007] in the control group while this association was not present in patients with endometriosis [ß:- 0.003; 95%CI:- 0.468-0.461; p = 0.988)]. These results do not support data from the literature indicating a reduced aromatase expression in granulosa cells of affected women, but they highlight a potential subtle mechanism affecting the ovulation process in these women.


Subject(s)
Endometriosis , Estradiol , Humans , Female , Estradiol/metabolism , Aromatase/genetics , Aromatase/metabolism , Endometriosis/genetics , Endometriosis/metabolism , Granulosa Cells/metabolism , Follicular Fluid/metabolism , Cytochrome P-450 CYP1A1/metabolism , Gene Expression
16.
Toxicology ; 501: 153686, 2024 01.
Article in English | MEDLINE | ID: mdl-38036094

ABSTRACT

Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi contaminating cereals and in grain-based products threatening human and animal health due to its endocrine disrupting effects. Germane to the mechanisms of action, ZEN may activate the estrogen receptors and inhibit the estrogens-producing enzyme aromatase (CYP19A1). Both show single nucleotide variants (SNVs) among humans associated with a diverse susceptibility of being activated or inhibited. These variations might modify the endocrine disrupting action of ZEN, requiring dedicated studies to improve its toxicological understanding. This work focused on human aromatase investigating via 3D molecular modelling whether some of the SNVs reported so far (n = 434) may affect the inhibitory potential of ZEN. It has been also calculated the inhibition capability of α-zearalenol, the most prominent and estrogenically potent phase I metabolite of ZEN, toward those aromatase variants with an expected diverse sensitivity of being inhibited by ZEN. The study: i) described SNVs likely associated with a different susceptibility to ZEN and α-zearalenol inhibition - like T310S that is likely more susceptible to inhibition, or D309G and S478F that are possibly inactive variants; ii) proofed the possible existence of inter-individual susceptibility to ZEN; iii) prioritized aromatase variants for future investigations toward a better comprehension of ZEN xenoestrogenicity at an individual level.


Subject(s)
Zearalenone , Zeranol , Animals , Humans , Zearalenone/toxicity , Aromatase/genetics , Zeranol/metabolism , Zeranol/pharmacology , Hand Strength
17.
Fish Physiol Biochem ; 50(2): 797-812, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157099

ABSTRACT

The physiology of ectothermic animals, including fish, is strictly regulated by season-related external factors such as temperature or photoperiod. The immune response and the production of hormones, such as estrogens, are therefore also subject to seasonal changes. This study in common carp aimed to determine how the season affects the estrogen system and the immune response, including the antibacterial response during Aeromonas salmonicida infection. We compared the immune reaction in spring and autumn in the head kidney and liver and found that carp have higher levels of blood 17ß-estradiol in autumn, while in the liver of these fish there is a higher constitutive expression of genes encoding vitellogenin, estrogen receptors and Cyp19 aromatase than in spring. Fish sampled in autumn also exhibited higher expression of immune-related genes in the liver. In contrast, in the head kidney from fish sampled in the autumn, the expression of genes encoding estrogen receptors and aromatase was lower than in spring, and a similar profile of expression was also measured in the head kidney for inos, arginases and il-10. In turn, during bacterial infection, we observed higher upregulation of the expression of inos, il-12p35, ifnγ-2, arginase 2 and il-10 in the liver of carp sampled in spring. In the liver of carp infected in spring a higher upregulation of the expression of the genes encoding CRPs was observed compared to fish infected during autumn. The opposite trend occurred in the head kidney, where the upregulation of the expression of the genes involved in the immune response was higher in fish infected in autumn than in those infected in spring. During the infection, also season-dependent changes occurred in the estrogen system. In conclusion, we demonstrated that season differentially affects the estrogenic and immune activity of the head kidney and liver. These results reinforce our previous findings that the endocrine and immune systems cooperate in maintaining homeostasis and fighting infection.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Interleukin-10 , Seasons , Aromatase/genetics , Aromatase/metabolism , Estrogens/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Immunity, Innate , Carps/genetics , Carps/metabolism
18.
Molecules ; 28(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138611

ABSTRACT

Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.


Subject(s)
Cisplatin , Ovarian Reserve , Female , Mice , Animals , Cisplatin/pharmacology , Aromatase/genetics , Aromatase/metabolism , Granulosa Cells/metabolism , Signal Transduction
19.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139289

ABSTRACT

Androgenic alopecia (AGA) is the most prevalent type of progressive hair loss and has psychological repercussions. Nevertheless, the effectiveness of current pharmacological treatments remains limited, in part because the molecular basis of the disease has not been fully elucidated. Our group previously highlighted the important roles of aromatase and 5α-reductase (5α-R) in alopecia in young women with female pattern hair loss. Additionally, an association has been proposed between AGA and prostate cancer (PCa), suggesting that genes implicated in PCa would also be involved in AGA. A low-invasive, sensitive, and precise method was used to determine mRNA levels of aromatase, 5α-R isozymes, and 84 PCa-related genes in samples of plucked hair from young men with AGA and controls. Samples were obtained with a trichogram from the vertex scalp, and mRNA levels were quantified using real-time RT-PCR. The men with AGA had significantly higher 5α-R2 mRNA levels in comparison to controls; interestingly, some of them also showed markedly elevated mRNA levels of 5α-R1 or 5α-R3 or of both, which may explain the varied response to 5α-R inhibitor treatments. The men with AGA also showed significant changes versus controls in 6 out of the 84 genes implicated in PCa. This study contributes greater knowledge of the molecular bases of AGA, facilitating early selection of the most appropriate pharmacological therapy and opening the way to novel treatments.


Subject(s)
Cholestenone 5 alpha-Reductase , Prostatic Neoplasms , Male , Humans , Cholestenone 5 alpha-Reductase/genetics , Aromatase/genetics , Isoenzymes/therapeutic use , RNA, Messenger/genetics , Hair , Alopecia/genetics , Alopecia/drug therapy , Prostatic Neoplasms/genetics
20.
Fish Physiol Biochem ; 49(6): 1489-1509, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966680

ABSTRACT

In Heteropneustes fossilis, kisspeptins (Kiss) and nonapeptides (NPs; vasotocin, Vt; isotocin, Itb; Val8-isotocin, Ita) stimulate the hypothalamus-pituitary-gonadal (HPG) axis, and estrogen feedback modulates the expression of these systems. In this study, functional interactions among these regulatory systems were demonstrated in the brain and ovary at the mRNA expression level. Human KISS1 (hKISS1) and H. fossilis Kiss2 (HfKiss2) produced biphasic effects on brain and ovarian vt, itb and ita expression at 24 h post injection: low and median doses produced inhibition, no change or mild stimulation, and the highest dose consistently stimulated the mRNA levels. The Kiss peptides produced an upregulation of NP mRNA expression at 24 h incubation of brain and ovarian slices by increasing the concentration of hKISS1 and HfKiss2. The kiss peptides stimulated brain cyp19a1b and ovary cyp19a1a expression, both in vivo and in vitro. Peptide234, a Kiss1 receptor antagonist, inhibited basal mRNA expression of the NPs, cyp19a1b and cyp19a1a, which was prevented by the Kiss peptides, both in vivo and in vitro. In all the experiments, HfKiss2 was more effective than hKISS1 in modulating mRNA expression. The results suggest that the NP and E2 systems are functional targets of Kiss peptides and interact with each other.


Subject(s)
Catfishes , Ovary , Female , Humans , Animals , Ovary/metabolism , Kisspeptins/genetics , Kisspeptins/pharmacology , Kisspeptins/metabolism , Catfishes/metabolism , Aromatase/genetics , Aromatase/metabolism , Brain/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...