Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.652
Filter
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
2.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003066

ABSTRACT

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Subject(s)
Arsenic , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Arsenic/analysis , China , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , Models, Chemical , Models, Theoretical
3.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003077

ABSTRACT

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Subject(s)
Metallurgy , Occupational Exposure , Humans , Occupational Exposure/analysis , Environmental Exposure/statistics & numerical data , Metals/urine , Metals/analysis , Risk Assessment , Arsenic/analysis , Environmental Monitoring , Adult , Environmental Pollutants/analysis , Middle Aged
4.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003078

ABSTRACT

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Subject(s)
Arsenic , Cadmium , Charcoal , Magnesium , Oryza , Soil Pollutants , Soil , Oryza/chemistry , Cadmium/analysis , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Soil/chemistry , Magnesium/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods
5.
J Environ Sci (China) ; 147: 332-341, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003051

ABSTRACT

Growing evidences showed that heavy metals exposure may be associated with metabolic diseases. Nevertheless, the mechanism underlying arsenic (As) exposure and metabolic syndrome (MetS) risk has not been fully elucidated. So we aimed to prospectively investigate the role of serum uric acid (SUA) on the association between blood As exposure and incident MetS. A sample of 1045 older participants in a community in China was analyzed. We determined As at baseline and SUA concentration at follow-up in the Yiwu Elderly Cohort. MetS events were defined according to the criteria of the International Diabetes Federation (IDF). Generalized linear model with log-binominal regression model was applied to estimate the association of As with incident MetS. To investigate the role of SUA in the association between As and MetS, a mediation analysis was conducted. In the fully adjusted log-binominal model, per interquartile range increment of As, the risk of MetS increased 1.25-fold. Compared with the lowest quartile of As, the adjusted relative risk (RR) of MetS in the highest quartile was 1.42 (95% confidence interval, CI: 1.03, 2.00). Additionally, blood As was positively associated with SUA, while SUA had significant association with MetS risk. Further mediation analysis demonstrated that the association of As and MetS risk was mediated by SUA, with the proportion of 15.7%. Our study found higher As was remarkably associated with the elevated risk of MetS in the Chinese older adults population. Mediation analysis indicated that SUA might be a mediator in the association between As exposure and MetS.


Subject(s)
Arsenic , Environmental Exposure , Metabolic Syndrome , Uric Acid , Aged , Female , Humans , Male , Middle Aged , Arsenic/blood , Arsenic/toxicity , China/epidemiology , East Asian People , Environmental Exposure/adverse effects , Metabolic Syndrome/epidemiology , Metabolic Syndrome/chemically induced , Metabolic Syndrome/blood , Uric Acid/blood
6.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003056

ABSTRACT

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Subject(s)
Arsenic , Environmental Exposure , Oxidative Stress , Adult , Female , Humans , Male , Middle Aged , 8-Hydroxy-2'-Deoxyguanosine , Arsenic/toxicity , Biomarkers/urine , China , Cross-Sectional Studies , DNA Damage , East Asian People , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Longitudinal Studies , Oxidative Stress/drug effects
7.
J Environ Sci (China) ; 148: 468-475, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095181

ABSTRACT

Arsenic (As) methylation in soils affects the environmental behavior of As, excessive accumulation of dimethylarsenate (DMA) in rice plants leads to straighthead disease and a serious drop in crop yield. Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security. Here, soils including un-arsenic contaminated (N-As), low-arsenic (L-As), medium-arsenic (M-As), and high-arsenic (H-As) soils were incubated under continuous anoxic, continuous oxic, and consecutive anoxic/oxic treatments respectively, to profile arsenic methylating process and microbial species involved in the As cycle. Under anoxic-oxic (A-O) treatment, methylated arsenic was significantly increased once oxygen was introduced into the incubation system. The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic (A), oxic (O), and oxic-anoxic (O-A) treatments, under which arsenic was methylated slightly and then decreased in all four As concentration soils. In fact, the most plentiful arsenite S-adenosylmethionine methyltransferase genes (arsM) contributed to the increase in As methylation. Proteobacteria (40.8%-62.4%), Firmicutes (3.5%-15.7%), and Desulfobacterota (5.3%-13.3%) were the major microorganisms related to this process. These microbial increased markedly and played more important roles after oxygen was introduced, indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic (flooding) and oxic (drainage) environment. The novel findings provided new insights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.


Subject(s)
Arsenic , Oryza , Soil Microbiology , Soil Pollutants , Soil , Arsenic/analysis , Soil Pollutants/analysis , Methylation , Soil/chemistry , Microbiota , Oxidation-Reduction , Bacteria/metabolism
8.
J Environ Sci (China) ; 148: 637-649, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095196

ABSTRACT

In this study, we investigated improving the performance of a layered double hydroxide (LDH) for the adsorption of As(III) and As(V) by controlling the morphology of LDH crystals. The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid (SA) as a morphological control agent. Doping the LDH crystals with carboxylate ions (RCOO-) derived from SA caused the crystals to develop in a radial direction. This changed the pore characteristics and increased the density of active surface sites. Subsequently, SA/MgFe-LDH showed excellent affinity for As(III) and As(V) with maximum sorption densities of 2.42 and 1.60 mmol/g, respectively. By comparison, the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III) and As(V), respectively. The LDH was effective over a wide pH range for As(III) adsorption (pH 3-8.5) and As(V) adsorption (pH 3-6.5). Using a combination of spectroscopy and sorption modeling calculations, the main sorption mechanism of As(III) and As(V) on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchange with hydroxyl group (-OH) and RCOO-. Specifically, bidentate As-Fe complexes were proposed for both As(III) and As(V) uptake, with the magnitude of formation varying with the initial As concentration. Importantly, the As-laden adsorbent had satisfactory stability in simulated real landfill leachate. These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.


Subject(s)
Arsenic , Hydroxides , Magnesium Oxide , Succinic Acid , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics , Arsenic/chemistry , Succinic Acid/chemistry , Hydroxides/chemistry , Magnesium Oxide/chemistry , Water Purification/methods , Models, Chemical
9.
J Environ Sci (China) ; 149: 278-287, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181642

ABSTRACT

The arsenic (As) release from sediments in great lakes is affected by various factors. In this study, the characteristics of As release from sediments was investigated, and the As sources and sinks with the strengths in sediments from different areas (grass-type, algae-type, and grass-algae alternation areas) in great shallow lakes (Taihu Lake, China) were analyzed, and the influence of P competition in the process of As release was also studied. The results showed that changing trend of the values of equilibrium As concentration in sediments were consistent with the regional changes (0 to 28.12 µg/L), and the sediments from algae-type areas had the higher values. The sediments from western lake and northwest lake bay were a strong As and a weak P source, and the north lake bay had the opposite trend of these two regions. Intense P source competition with As from the sediments occurred in algae-type areas. The grass-type areas had strong As and P retention capacities, indicating a sink role of sediment with high As and P sorption capacities. The degree of As and P saturation had similar trend in sediments, and the grass-type areas had the higher values, 18.3%-21.4% and 15.31%-20.34%, respectively. Contribution analysis results showed that most of As release contribution was from the bottom (30-50 cm) sediments, and the surface (0-10 cm) sediments from algae-type areas contributed more to the overlying water than other region.


Subject(s)
Arsenic , Environmental Monitoring , Geologic Sediments , Lakes , Phosphorus , Water Pollutants, Chemical , Lakes/chemistry , Phosphorus/analysis , Arsenic/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , China , Poaceae
10.
BMC Plant Biol ; 24(1): 832, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39232682

ABSTRACT

BACKGROUND: Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY: Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS: The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION: This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.


Subject(s)
Antioxidants , Arsenic , Oxidative Stress , Water , Zea mays , Zea mays/microbiology , Zea mays/drug effects , Zea mays/growth & development , Oxidative Stress/drug effects , Arsenic/toxicity , Antioxidants/metabolism , Water/metabolism , Burkholderiales/metabolism , Burkholderiales/drug effects , Reactive Oxygen Species/metabolism
11.
Pestic Biochem Physiol ; 204: 106064, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277381

ABSTRACT

Environmental pollution caused by arsenic or its compounds is called arsenic pollution. Arsenic pollution mainly comes from people's mining and smelting of arsenic compounds. In addition, the widespread use of arsenic compounds, such as the use and production of arsenic-containing pesticides, is also a source of arsenic contamination. Arsenic contamination leads to an increased risk of arsenic exposure, and the multi-organ toxicity induced by arsenic exposure is a global health problem. As a non-mammalian vertebrate with high nutrient levels, chickens readily absorb and accumulate arsenic from their food. Relevant studies have shown that arsenic exposure induces hepatotoxicity in chickens, and there has been a steady stream of research into the specific mechanisms involved. PANoptosis, a newly discovered and unique mode of programmed cell death (PCD) characterized by both apoptosis, cellular pyroptosis, and necroptosis. There are no studies to indicate whether chicken liver toxicity due to arsenic is associated with PANoptosis. Therefore, we established chicken animal models and chicken primary hepatocyte models exposed to different arsenic concentrations to dissect the role and mechanism of PANoptosis in arsenic exposure-induced hepatotoxicity in chickens. Our histopathological results showed that arsenic treatment caused dose-dependent damage to chicken liver structure. Meanwhile, different doses of arsenic treatment groups caused significant up-regulation of the protein level of ZBP1, a key factor of PANoptosis. And then consequently triggered the abnormal gene and protein expression levels of apoptosis-associated factors (Caspase-8, Caspase-7, Caspase-3), cellular pyroptosis-associated factors (NLRP3, ASC, GSDMD) and necroptosis-associated factors (RIPK1, RIPK3, MLKL). In conclusion, our study revealed that PANoptosis is involved in arsenic-induced chicken hepatotoxicity. Our findings provide a new perspective on the pathogenesis of arsenic exposure-induced hepatotoxicity in chickens.


Subject(s)
Arsenic , Chickens , Liver , Animals , Arsenic/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Chemical and Drug Induced Liver Injury/pathology , Necroptosis/drug effects , Apoptosis/drug effects
12.
J Appl Microbiol ; 135(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39227171

ABSTRACT

AIMS: This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter). METHODS AND RESULTS: The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores). CONCLUSIONS: A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.


Subject(s)
Arabidopsis , Arsenic , Brassica napus , Flavobacterium , Oxidative Stress , Arsenic/metabolism , Brassica napus/growth & development , Brassica napus/microbiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis/drug effects , Flavobacterium/growth & development , Flavobacterium/drug effects , Lactuca/microbiology , Lactuca/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Chlorophyll/metabolism , Seedlings/growth & development , Seedlings/microbiology , Stress, Physiological , Soil Microbiology , Gibberellins/metabolism , Gibberellins/pharmacology , Siderophores/metabolism , Plant Development/drug effects , Drug Resistance, Bacterial
13.
Environ Monit Assess ; 196(10): 946, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289191

ABSTRACT

Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 µg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.


Subject(s)
Arsenic , Chitosan , Iron , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Arsenic/analysis , Arsenic/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Iron/chemistry , Polymers/chemistry
14.
Sci Total Environ ; 952: 175896, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39222818

ABSTRACT

Rice is a staple food for a significant portion of the global population. Arsenic (As) accumulated in rice grains influences rice quality which threatens human health. In this study, we used three machine learning models to predict arsenic accumulation in rice based on over 300 surveys. The prediction results of soil arsenic indicate that high-arsenic soil areas are mainly distributed in South and Southeast Asia such as India, China, and Thailand. In addition, higher bioaccumulation factors (BAF), associated with higher temperature, are predominantly observed in eastern India and southern Myanmar. However, arsenic content in soil is relatively lower in these areas. About 5.5 billion population may be threatened by the consumption of high-arsenic rice. It can be concluded that temperatures may influence the BAF except for soil arsenic, and soil physicochemical properties. Further research on the relationship between climate parameters and BAF should be conducted to address and adapt to future climate change. Additionally, understanding the mechanism of arsenic accumulation under different climatic conditions is crucial for developing agricultural technologies to reduce arsenic accumulation in rice.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Soil , Arsenic/analysis , Soil Pollutants/analysis , Soil/chemistry , India , Environmental Monitoring , Food Contamination/analysis , China , Climate Change , Agriculture
15.
Sci Total Environ ; 952: 175991, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39236814

ABSTRACT

BACKGROUND: People are exposed to metals in various ways during their daily lives. However, the association between metal exposure and gallstones remains unclear. OBJECTIVES: To investigate the relationship between serum elemental concentrations and the risk of gallstones. METHODS: Participants (n = 4204) were drawn from the Henan Rural Cohort. Gallstone diagnosis was based on abdominal ultrasound reports during follow-up. Baseline serum elemental concentrations were measured using inductively coupled plasma mass spectrometry. The relationship between serum elemental levels and gallstones was evaluated using robust Poisson regression, restricted cubic spline (RCS), quantile g-computation (Qgcomp), grouped weighted quantile sum (GWQS) and Bayesian kernel machine regression (BKMR). RESULTS: 121 individuals were diagnosed with gallstone (incidence rate of 2.88 %). In robust Poisson regression, after adjusting for confounding factors, the highest quartile of arsenic concentration compared to the lowest quartile had a 1.90 times higher relative risk (RR) [95 % confidence interval (CI): 1.05, 3.44]. Conversely, the highest quartile of zinc concentration compared to the lowest quartile had a 0.50 times lower RR (95 % CI: 0.28, 0.89). RCS showed an approximately "S"-shaped nonlinear relationship between serum arsenic levels and gallstones, with increasing arsenic concentration leading to a higher risk of gallstones; however, the risk plateaued when arsenic concentration exceeded 0.62 µg/L. Both the Qgcomp and GWQS indicated that arsenic plays a significant role in increasing the risk of gallstones, whereas zinc plays a significant role in reducing the risk of gallstones. BKMR showed that raising arsenic exposure from the 25th to the 75th percentile increased the risk of gallstones, while raising serum zinc concentration reduced it. CONCLUSIONS: Higher serum arsenic concentration increases the risk of gallstones, whereas higher zinc concentration may reduce the risk. Effective prevention of gallstones may require further reduction of arsenic exposure and appropriate increases in zinc intake.


Subject(s)
Arsenic , Environmental Exposure , Gallstones , Humans , Gallstones/epidemiology , Arsenic/blood , China/epidemiology , Female , Middle Aged , Male , Environmental Exposure/statistics & numerical data , Rural Population/statistics & numerical data , Adult , Cohort Studies , Metals/blood , Aged , Risk Factors
16.
Environ Geochem Health ; 46(10): 420, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269655

ABSTRACT

Environmental Arsenic (As) exposure is one of the main health challenges in different area of the world. As is a significant factor responsible to the reproductive system toxicity in both male and female. In this study, the most important effects mechanisms and biomarkers related to environmental exposure to As and the reproductive system toxicity, and infertility risk are reviewed in male and female. The results showed that the most important As-induced reproductive system toxicity in the male were alteration in the quantity and quality of semen, testicular toxicity, oxidative stress, testosterone reduction, and sperm apoptosis. For female were oxidative stress, spontaneous miscarriage, reproductive cycle disruption, decrease in the estradiol, progesterone, and testosterone levels and impair fecundity. The main mechanisms of reproductive system toxicity caused by As exposure in male were, genotoxic effects, reduction of glutathione, disruption of sex hormones, sperm flagellum formation impairment, inhibition of spermatogenesis, disruption of cell signaling pathways, and metabolites disruption. For female were abnormal signaling in gene expression, hormonal homeostasis, As-accumulation in placental tissue and creation of reactive oxygen, disruption in the neurotransmitters balance, and sex hormones disruption. The suitable biomarkers for As-induced reproductive toxicity in male were changes in testosterone, one-carbon and lipid metabolism, noncoding RNAs, and steroid hormone homeostasis, and for female was human chorionic gonadotropin (hCG) changes. Finaly, taking selenium, zinc, silymarin, vitamins (C and E) and phytonutrients can be effective in reducing the As-induced reproductive system toxicity and infertility risk.


Subject(s)
Arsenic , Environmental Exposure , Reproduction , Female , Male , Humans , Arsenic/toxicity , Environmental Exposure/adverse effects , Reproduction/drug effects , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
17.
Anal Chim Acta ; 1324: 343098, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39218578

ABSTRACT

BACKGROUND: Arsenic, classified as a priority pollutant and human carcinogen by the IARC, is subject to stringent regulatory limits in food and water. Among various arsenic species found in water samples, arsenite (As(III)) is identified as the most toxic form. Given the limitations of conventional spectroscopic techniques in speciation analysis, there is a crucial need for innovative and sustainable methodologies that enable arsenic speciation. Simplifying these methodologies is essential for widespread applicability and effective environmental monitoring. RESULTS: This study proposes a simple and cost-effective analytical methodology for speciating inorganic arsenic in water samples. The method involves extracting As(III) into a polymer inclusion membrane (PIM) containing the extractant Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid), followed by analysis using energy dispersive X-ray fluorescence (EDXRF) spectrometry. The concentration of arsenate was measured after a reduction step using a thiosulfate/iodide mixture. This simple methodology allows a limit of quantification for trivalent arsenic (2 µg L-1), which is well below the World Health Organization's recommended maximum permissible level of As in drinking water (10 µg L-1). The method that is developed allows the determination of As at trace levels in waters with naturally occurring arsenic. SIGNIFICANCE AND NOVELTY: This study represents a significant advance in the field, providing a novel and efficient methodology for arsenic speciation analysis in water samples. By combining the advantages of polymer inclusion membrane (PIM) extraction with energy dispersive X-ray fluorescence (EDXRF) spectrometry, this study offers a cost-effective and environmentally friendly approach to address the critical issue of arsenic contamination in water sources, thereby contributing to enhanced environmental monitoring and public health protection.


Subject(s)
Arsenic , Polymers , Spectrometry, X-Ray Emission , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Polymers/chemistry , Arsenic/analysis , Spectrometry, X-Ray Emission/methods , Membranes, Artificial
18.
Food Chem Toxicol ; 192: 114932, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142554

ABSTRACT

The presence of heavy metals in food products may seem an archaic concern; however, our study reveals that the risk is significant, unexpectedly in Food for Special Medical Purposes (FSMP) for oncology patients available in Polish pharmacies. This investigation fills that gap through a detailed toxicological analysis and health risk assessment of these heavy metals in FSMP products (n = 23) using inductively coupled plasma mass spectrometry (ICP-MS). Our comprehensive risk assessment involved evaluating (1) the concentrations of As, Cd, Hg, and Pb in both liquid and powdered FSMP formulations, (2) the amount of heavy metals ingested per serving as specified by the manufacturer, and (3) the cumulative daily and weekly intake adjusted for body weight, benchmarked against the provisional tolerable weekly intake (PTWI). While most samples were below PTWI limits, Cd levels raised concerns due to potential cumulative exposure risks, particularly for oncology patients consuming these products regularly. This study underscores the hidden dangers of heavy metal contamination in FSMP, emphasizing the need for vigilant monitoring and stringent regulatory frameworks to ensure patient safety. By uncovering these latent risks through meticulous toxicological assessment, our research provides crucial insights that could safeguard vulnerable populations. This study is significant due to concerns related to the complex risk assessment of FSMP for cancer patients, considering the complexity of oncological diseases and other comorbid factors, as well as the verification of available legal and regulatory acts of FSMP at the European Community level.


Subject(s)
Cadmium , Food Contamination , Lead , Metals, Heavy , Humans , Poland , Metals, Heavy/analysis , Metals, Heavy/toxicity , Food Contamination/analysis , Risk Assessment , Lead/analysis , Lead/toxicity , Cadmium/analysis , Cadmium/toxicity , Neoplasms/chemically induced , Pharmacies , Arsenic/analysis , Arsenic/toxicity , Mercury/analysis , Mercury/toxicity
19.
J Affect Disord ; 365: 265-275, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39142580

ABSTRACT

People are paying more and more attention to the effects of environmental factors such as heavy metals on depression, and heavy metals may destroy the homeostasis of vitamin D in the body by affecting human metabolism, and the lack of vitamin D will increase the risk of depression. There are few studies on vitamin D deficiency in depression caused by heavy metals, and it is not deep enough. Therefore, this study used logistic regression, restricted cubic spline curve, weighted quantile and Quantile g-computation model to analyze the effects of heavy metal exposure alone and in combination on vitamin D and depression, as well as the potential role of vitamin D deficiency in the process of heavy metal-induced depression. The results showed that cadmium exposure alone or in combination increased the risk of depression (P < 0.05). When Cd increased by 1 unit, the risk of depressive symptoms increased by 1.178 units. Arsenic and its compounds and lead affected vitamin D levels in the body and contributed the second highest or highest weight in the mixture (P < 0.05). It is worth noting that after grouping according to vitamin D deficiency, compared with the normal group, the mixed exposure of heavy metals in the vitamin D deficiency group had more types of metals related to depression and contributed more weight (P < 0.05). This study found that single metal or multi-metal mixed exposure is associated with depression. Vitamin D deficiency may increase the risk of depression. Vitamin D may be a potential factor in the treatment of depression caused by metal, and the specific mechanism of action needs further study.


Subject(s)
Cadmium , Depression , Metals, Heavy , Nutrition Surveys , Vitamin D Deficiency , Humans , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/complications , Cross-Sectional Studies , Female , Male , Metals, Heavy/adverse effects , Metals, Heavy/blood , Adult , Depression/epidemiology , Middle Aged , Cadmium/blood , Cadmium/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Lead/blood , Lead/adverse effects , Vitamin D/blood , Arsenic/adverse effects , Aged , Young Adult
20.
Water Res ; 265: 122252, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39173353

ABSTRACT

Dissolved Mn(III), as a potent one-electron transfer oxidant, is ubiquitous in natural waters and sediments and actively involved in the transformation of organics in biogeochemical processes and water treatment. However, the important role of Mn(III) has long been overlooked because of its short life. This study was the first to investigate the performance of Mn(III) in organoarsenic transformation and to highlight the environmental implications. Both homogeneous and heterogeneous Mn(III)-based systems were effective to remove p-arsanilic acid (p-ASA, 15 µM) with degradation efficiency approaching 40.4 %-98.3 %. Two degradation pathways of p-ASA were proposed, in which As-C bond and amino group were vulnerable sites to Mn(III) attack, leading to the formation of more toxic arsenate (As(V)) and nitarsone. Through transforming organoarsenic to inorganic arsenic species, the removal efficiency of total arsenic and dissolved organics were enhanced to 65.1 %-95.5 % and 16.6 %-36.6 %, respectively, by post-treatment of coagulation or adsorption, accompanied with significant reduction of cytotoxicity and environmental risks. Particularly, polymeric ferric sulfate and granular activated alumina showed superior performance in the total As removal. Moreover, oxidation efficiency of Mn(III) was hardly affected by common cations and anions (e.g., Ca2+, Mg2+, NH4+, NO3-, SO4-), halide ions (e.g., Cl-, Br-) and natural organic matter, showing high robustness for organoarsenic removal under complicated water matrices. Overall, this study shed light on the significance of Mn(III) to the fate of organoarsenics in manganese-rich environments, and demonstrated the promising potential of Mn(III)-based strategies to achieve targeted decontamination in water/wastewater purification.


Subject(s)
Arsanilic Acid , Arsenic , Manganese , Water Pollutants, Chemical , Water Purification , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Arsanilic Acid/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL