Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.175
Filter
1.
World J Microbiol Biotechnol ; 40(6): 192, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709285

ABSTRACT

The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.


Subject(s)
Arsenic , Bacteria , Biodegradation, Environmental , Biosensing Techniques , Operon , Biosensing Techniques/methods , Arsenic/metabolism , Bacteria/genetics , Bacteria/metabolism , Synthetic Biology/methods , Genetic Engineering
2.
Chemosphere ; 358: 142199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692366

ABSTRACT

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Subject(s)
Arsenic , Biodegradation, Environmental , Cadmium , Cannabis , Copper , Lead , Metals, Heavy , Soil Pollutants , Soil , Cannabis/growth & development , Cannabis/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Arsenic/metabolism , Arsenic/analysis , Copper/analysis , Soil/chemistry , Biomass , Plant Roots/metabolism , Plant Roots/growth & development
3.
Environ Microbiol ; 26(5): e16629, 2024 May.
Article in English | MEDLINE | ID: mdl-38695111

ABSTRACT

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Subject(s)
Arsenic , Extremophiles , Gene Transfer, Horizontal , Rhodophyta , Rhodophyta/genetics , Extremophiles/genetics , Arsenic/metabolism , Mercury/metabolism , Stress, Physiological/genetics , Inactivation, Metabolic/genetics , Evolution, Molecular
4.
Sci Rep ; 14(1): 10193, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702361

ABSTRACT

Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.


Subject(s)
Amphibians , Arsenic , Microbiota , Skin , Animals , Arsenic/metabolism , Arsenic/toxicity , Microbiota/drug effects , Skin/microbiology , Skin/drug effects , Skin/metabolism , Amphibians/microbiology , Bacteria/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Permeability/drug effects
5.
Sci Rep ; 14(1): 9972, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693342

ABSTRACT

This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.


Subject(s)
Acinetobacter , Alginates , Arsenic , Biodegradation, Environmental , Biomass , Water Pollutants, Chemical , Alginates/chemistry , Alginates/metabolism , Acinetobacter/metabolism , Acinetobacter/genetics , Arsenic/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Purification/methods , Temperature , Thermodynamics
6.
Planta ; 259(6): 141, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695915

ABSTRACT

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Subject(s)
Arsenic , Oryza , Phloem , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Phloem/metabolism , Arsenic/metabolism , Biological Transport , Edible Grain/metabolism , Edible Grain/growth & development
7.
J Hazard Mater ; 472: 134623, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754231

ABSTRACT

This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.


Subject(s)
Arsenic , Biotransformation , Gastrointestinal Microbiome , Snails , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Arsenic/metabolism , Arsenic/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Snails/metabolism , Snails/drug effects , Fresh Water , Bioaccumulation , Bacteria/metabolism , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology
8.
Sci Total Environ ; 935: 173443, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782281

ABSTRACT

Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.


Subject(s)
Arsenic , Benzopyrans , Ferric Compounds , Oxidation-Reduction , Shewanella , Ferric Compounds/metabolism , Ferric Compounds/chemistry , Arsenic/metabolism , Shewanella/metabolism , Iron/chemistry , Iron/metabolism
9.
Chemosphere ; 359: 142289, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723690

ABSTRACT

The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.


Subject(s)
Arsenic , Bioaccumulation , Biotransformation , Cichlids , Liver , Selenium , Water Pollutants, Chemical , Animals , Arsenic/metabolism , Cichlids/metabolism , Water Pollutants, Chemical/metabolism , Selenium/metabolism , Liver/metabolism , Liver/drug effects , Gills/metabolism , Muscles/metabolism
10.
Chemosphere ; 359: 142331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740340

ABSTRACT

To achieve "production while remediation" in arsenic (As) -contaminated farmlands, a field experiment was conducted to investigate the effects of five Pteris vittata L. (PV) - maize intercropping modes on the growth, nutrient, and As accumulation characteristics of PV and maize. The intercropping increased the As content of PV by 2.9%-132.0% and decreased the As content in maize shoots by 15.5%-37.0%. Total As accumulation in above-ground plant parts reached 202.03-941.97 g hm-2. Intercropping also improved nitrogen and phosphorus content in maize kernels by 27.6%-124.7% and 15.9%-31.5%, respectively. Additionally, intercropping increased maize kernel 100-grain weight by 10.0%-16.6% and resulted in a 1.1%-24.1% increase in maize yield compared to sole cultivation. The intercropping transformed soil As from iron-bound to calcium-bound and aluminum-bound forms. Analysis of soil microbial diversity showed that the intercropping decreases the abundance of Chloroflexi and increases the abundance of Proteobacteria. Among the five modes, the intercropping mode with 4 rows of maize and 4 rows of PV showed the highest remediation efficiency and mechanized operation. These findings contribute to a theoretical framework and technical support for the simultaneous soil pollution remediation and productive farming practices.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Soil , Zea mays , Arsenic/metabolism , Arsenic/analysis , Zea mays/growth & development , Soil Pollutants/metabolism , Soil Pollutants/analysis , Pteris/metabolism , Pteris/growth & development , Soil/chemistry , Soil Microbiology , Phosphorus/metabolism , Phosphorus/analysis , Biodegradation, Environmental , Agriculture/methods , Nitrogen/metabolism , Environmental Restoration and Remediation/methods
11.
J Hazard Mater ; 473: 134434, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762983

ABSTRACT

The behavior of As is closely related to trans(formation) of ferrihydrite, which often coprecipitates with extracellular polymeric substances (EPS), forming EPS-mineral aggregates in natural environments. While the effect of EPS on ferrihydrite properity, mineralogy reductive transformation, and associated As fate in sulfate-reducing bacteria (SRB)-rich environments remains unclear. In this research, ferrihydrite-EPS aggregates were synthesized and batch experiments combined with spectroscopic, microscopic, and geochemical analyses were conducted to address these knowledge gaps. Results indicated that EPS blocked micropores in ferrihydrite, and altered mineral surface area and susceptibility. Although EPS enhanced Fe(III) reduction, it retarded ferrihydrite transformation to magnetite by inhibiting Fe atom exchange in systems with low SO42-. As a result, 16% of the ferrihydrite was converted into magnetite in the Fh-0.3 treatment, and no ferrihydrite transformation occurred in the Fh-EPS-0.3 treatment. In systems with high SO42-, however, EPS promoted mackinawite formation and increased As mobilization into the solution. Additionally, the coprecipitated EPS facilitated As(V) reduction to more mobilized As(III) and decreased conversion of As into the residual phase, enhancing the potential risk of As contamination. These findings advance our understanding on biogeochemistry of elements Fe, S, and As and are helpful for accurate prediction of As behavior.


Subject(s)
Arsenic , Extracellular Polymeric Substance Matrix , Ferric Compounds , Ferric Compounds/chemistry , Arsenic/chemistry , Arsenic/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Water Pollutants, Chemical/chemistry
12.
J Hazard Mater ; 473: 134587, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772107

ABSTRACT

One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.


Subject(s)
Arsenic , Oryza , Plant Roots , Rhizosphere , Soil Microbiology , Soil Pollutants , Oryza/metabolism , Oryza/microbiology , Arsenic/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Availability , Microbiota
13.
J Hazard Mater ; 473: 134582, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776810

ABSTRACT

Sulfate-reducing bacteria (SRB) are generally found in sanitary landfills and play a role in sulfur (S) and metal/metalloid geochemical cycling. In this study, we investigated the influence of SRB on arsenic (As) metabolic pathways in refuse-derived cultures. The results indicated that SRB promote As(III) methylation and are beneficial for controlling As levels. Heterotrophic and autotrophic SRB showed significant differences during As cycling. In heterotrophic SRB cultures, the As methylation rate increased with As(III) concentration in the medium and reached a peak (85.1%) in cultures containing 25 mg L-1 As(III). Moreover, 4.0-12.6% of SO42- was reduced to S2-, which then reacted with As(III) to form realgar (AsS). In contrast, autotrophic SRB oxidized As(III) to less toxic As(V) under anaerobic conditions. Heterotrophic arsM-harboring SRB, such as Desulfosporosinus, Desulfocurvibacter, and Desulfotomaculum, express As-related genes and are considered key genera for As methylation in landfills. Thiobacillus are the main autotrophic SRB in landfills and can derive energy by oxidizing sulfur compounds and metal(loid)s. These results suggest that different types of SRB drive As methylation, redox reaction, and mineral formation in landfills. These study findings have implications for the management of As pollutants in landfills and other contaminated environments.


Subject(s)
Arsenic , Sulfates , Waste Disposal Facilities , Arsenic/metabolism , Sulfates/metabolism , Sulfates/chemistry , Oxidation-Reduction , Methylation , Bacteria/metabolism , Bacteria/genetics , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism
14.
Environ Pollut ; 355: 124207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795816

ABSTRACT

Bacteria-assisted phytoremediation uses bacteria to promote plant health and improve its ability to remediate toxic heavy metals like Arsenic (As). Here, we isolated rhizobacteria and identified them as Bacillus subtilis strain IU31 using 16S rDNA sequencing. IU31 showed phosphate solubilization potential on Pikovskaya agar medium and produced siderophores, which were detected on Chromium Azurol-S (CAS) agar medium. Indole-3-acetic acid (IAA) and gibberellins (GAs), namely GA1, GA3, GA4, GA7, GA9, GA12, GA15, and GA24, were quantified by GC/MS-SIM analysis. The expression levels of genes involved in GA and IAA biosynthesis, such as cyp112, cyp114, trpA, and trpB, were assessed using semi-quantitative RT-PCR. Plant bioassays showed that As at a 15 mg/kg concentration reduced plant growth, chlorophyll content, and biomass. However, IU31 inoculation significantly improved plant growth dynamics, enhancing As accumulation by up to 50% compared with uninoculated plants. IU31 inoculation induced the bioconcentration factor (BCF) and bioaccumulation factor (BAF) of As in plants compared to uninoculated plants, but the translocation factor (TF) of As was unaffected by IU31 inoculation. IU31 inoculation effectively restored glutathione-S-transferase (GST) and catalase (CAT) enzyme activities, as well as glutathione (GSH) and hydrogen peroxide concentrations to nearly normal levels, which were significantly elevated in plants exposed to As stress. These results show that IU31 improves plant health and growth by producing IAA and GAs, which might contribute to the uptake and detoxification of As.


Subject(s)
Antioxidants , Arsenic , Bacillus subtilis , Biodegradation, Environmental , Oryza , Plant Growth Regulators , Soil Pollutants , Arsenic/metabolism , Plant Growth Regulators/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Soil Pollutants/metabolism , Oryza/metabolism , Oryza/microbiology , Antioxidants/metabolism , Indoleacetic Acids/metabolism , Gibberellins/metabolism
15.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732236

ABSTRACT

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Subject(s)
Arsenic , Phosphates , Phosphates/metabolism , Arsenic/toxicity , Arsenic/metabolism , Lactobacillus/metabolism , Lactobacillus/drug effects , Lactobacillus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Arsenates/metabolism , Arsenates/toxicity
16.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644022

ABSTRACT

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Subject(s)
Arsenic , Oryza , Selenium , Soil Pollutants , Soil , Oryza/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Selenium/analysis , Selenium/metabolism , Arsenic/analysis , Arsenic/metabolism , Soil/chemistry , Arsenites
17.
J Hazard Mater ; 470: 134133, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574655

ABSTRACT

Although biodegradation of organic matter is well-known to trigger enrichment of arsenic (As) in groundwater, the effects of DOM sources and biodegradability on As enrichment remain elusive. In this study, groundwater samples were collected from the Hetao basin to identify DOM source and evaluate biodegradability by using spectral and molecular techniques. Results showed that in the alluvial fan, DOM was mainly sourced from terrestrially derived OM, while DOM in the flat plain was more originated from microbially derived OM. Compared to terrestrially derived DOMs, microbially derived DOMs in groundwater, which had relatively higher H/Cwa ratios, NOSC values and more biodegradable molecules, exhibited higher biodegradability. In the flat plain, microbially derived DOMs with higher biodegradability encountered stronger biodegradation, facilitating the reductive dissolution of Fe(III)/Mn oxides and As enrichment in groundwater. Moreover, the enrichment of As depended on the biodegradable molecules that was preferentially utilized for primary biodegradation. Our study highlights that the enrichment of dissolved As in the aquifers was closely associated with microbially derived DOM with high biodegradability and high ability for primary biodegradation.


Subject(s)
Arsenic , Biodegradation, Environmental , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/microbiology , Arsenic/metabolism , Arsenic/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry
18.
J Hazard Mater ; 470: 134232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593666

ABSTRACT

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Subject(s)
Arsenic , Carbon , Soil Microbiology , Soil Pollutants , Arsenic/metabolism , Arsenic/toxicity , Carbon/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Bacteria/metabolism , Bacteria/drug effects , Phosphorus/metabolism , Soil/chemistry
19.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640664

ABSTRACT

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Subject(s)
Antimony , Arsenic , Bacillus , Charcoal , Hydrogen Peroxide , Soil Microbiology , Soil Pollutants , Antimony/chemistry , Charcoal/chemistry , Arsenic/metabolism , Arsenic/chemistry , Soil Pollutants/metabolism , Bacillus/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Soil/chemistry , Iron/chemistry , Iron/metabolism , Biodegradation, Environmental
20.
J Hazard Mater ; 471: 134325, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38643573

ABSTRACT

Arsenic (As) contamination in rice poses a significant threat to human health due to its toxicity and widespread consumption. Identifying and manipulating key genes governing As accumulation in rice is crucial for reducing this threat. The large NIP gene family of aquaporins in rice presents a promising target due to functional redundancy, potentially allowing for gene manipulation without compromising plant growth. This study aimed to utilize genome editing to generate knock-out (KO) lines of genes of NIP family (OsLsi1, OsNIP3;1) and an anion transporter family (OsLsi2), in order to assess their impact on As accumulation and stress tolerance in rice. KO lines were created using CRISPR/Cas9 technology, and the As accumulation patterns, physiological performance, and grain yield were compared against wild-type (WT) under As-treated conditions. KO lines exhibited significantly reduced As accumulation in grain compared to WT. Notably, Osnip3;1 KO line displayed reduced As in xylem sap (71-74%) and grain (32-46%) upon treatment. Additionally, these lines demonstrated improved silicon (23%) uptake, photosynthetic pigment concentrations (Chl a: 77%; Chl b: 79%, Total Chl: 79% & Carotenoid: 49%) overall physiological and agronomical performance under As stress compared to WT. This study successfully utilized genome editing for the first time to identify OsNIP3;1 as a potential target for manipulating As accumulation in rice without compromising grain yield or plant vigor.


Subject(s)
Arsenic , CRISPR-Cas Systems , Gene Editing , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Arsenic/metabolism , Arsenic/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Gene Knockout Techniques , Silicon/metabolism , Plants, Genetically Modified/genetics , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...