Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 48(12): 7703-7710, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34755263

ABSTRACT

BACKGROUND: Numerous reports show that herbal medicines can be utilized in the treatment of different liver disorders. In this study, antioxidant, antibacterial, and anticancer activities of individual as well as combined 80% ethanolic extracts of Artemisia absinthium leaves and Citrus paradisi peels were investigated. METHODS AND RESULTS: Values of total phenolic contents (TPC), total flavonoid contents (TFC), DPPH-radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured to explore the antioxidant capacity. To assess antibacterial activity, four bacterial strains (Escherichia coli, Staphylococcus aureus, Salmonella enterica, and Klebsiella pneumoniae) were used. Anticancer activity was assessed on Huh-7 (liver cancer) and Vero (non-cancerous) cell lines. FRAP activity of combined plants extract was higher as compared to their individual effect; the trend did not hold in the case of DPPH-radical scavenging activity. Antibacterial activity of combined extracts by disk diffusion method was observed only against E.coli. MTT results indicated that both plants had a cytotoxic effect on Huh-7 cell line but did not show any effect on Vero cell line. Our data showed a strong negative correlation between the amount of TPC, TFC, & DPPH radicals-scavenging activity and viability of Huh-7 cell line.However, no effect was shown on the non-cancerous cell line. CONCLUSION: The ethanolic extracts of Artemisia absinthium leaves and Citrus paradisi peels can be used against liver cancer because of their antioxidant, antibacterial, and anticancer activities.


Subject(s)
Artemisia absinthium/enzymology , Citrus paradisi/enzymology , Liver Neoplasms/drug therapy , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Artemisia absinthium/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Citrus paradisi/metabolism , Flavonoids/pharmacology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phenols/analysis , Plant Extracts/pharmacology , Plant Leaves/chemistry
2.
FEBS Lett ; 587(3): 278-84, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23246612

ABSTRACT

Artemisinin is an antimalarial sesquiterpenoid isolated from the aerial parts of the plant Artemisia annua. CYP71AV1, a cytochrome P450 monooxygenase was identified in the artemisinin biosynthetic pathway. CYP71AV1 catalyzes three successive oxidation steps at the C12 position of amorpha-4,11-diene to produce artemisinic acid. In this study, we isolated putative CYP71AV1 orthologs in different species of Artemisia. Comparative functional analysis of CYP71AV1 and its putative orthologs, together with homology modeling, enabled us to identify an amino acid residue (Ser479) critical for the second oxidation reaction catalyzed by CYP71AV1. Our results clearly show that a comparative study of natural variants is useful to investigate the structure-function relationships of CYP71AV1.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Sesquiterpenes/metabolism , Amino Acid Sequence , Artemisia absinthium/enzymology , Artemisia absinthium/genetics , Artemisia annua/enzymology , Artemisia annua/genetics , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Polycyclic Sesquiterpenes , Protein Conformation , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...