Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.178
Filter
1.
Oncol Res ; 32(6): 1093-1107, 2024.
Article in English | MEDLINE | ID: mdl-38827320

ABSTRACT

Breast cancer is the leading cause of cancer-related deaths in women worldwide, with Hormone Receptor (HR)+ being the predominant subtype. Tamoxifen (TAM) serves as the primary treatment for HR+ breast cancer. However, drug resistance often leads to recurrence, underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates. Artemisinin (ART) has demonstrated efficacy in inhibiting the growth of drug-resistant cells, positioning art as a viable option for counteracting endocrine resistance. This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation. Five characterized genes (ar, cdkn1a, erbb2, esr1, hsp90aa1) and seven drug-disease crossover genes (cyp2e1, rorc, mapk10, glp1r, egfr, pgr, mgll) were identified using WGCNA crossover analysis. Subsequent functional enrichment analyses were conducted. Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and -sensitized patients. scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells, suggesting artemisinin's specific impact on tumor cells in estrogen receptor (ER)-positive BC tissues. Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes. These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.


Subject(s)
Artemisinins , Breast Neoplasms , Computational Biology , Drug Resistance, Neoplasm , Receptors, Estrogen , Tamoxifen , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Receptors, Estrogen/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation/drug effects
2.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724832

ABSTRACT

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Subject(s)
Artemisinins , Brain Neoplasms , Glioblastoma , Glutamine , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Glutamine/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Artemisinins/therapeutic use , Artemisinins/pharmacology , Reactive Oxygen Species/metabolism , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Tumor Microenvironment , Apoptosis , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Cell Movement , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
3.
PLoS One ; 19(5): e0299517, 2024.
Article in English | MEDLINE | ID: mdl-38713730

ABSTRACT

Artemisinin-based combination therapies (ACTs) represent one of the mainstays of malaria control. Despite evidence of the risk of ACTs resistant infections in resource-limited countries, studies on the rational use of ACTs to inform interventions and prevent their emergence and/or spread are limited. The aim of this study was designed to analyze practices toward ACTs use for treating the treatment of uncomplicated malaria (UM) in an urban community. Between November 2015 and April 2016, a cross-sectional and prospective study was conducted in the 6 health facilities and all pharmacies in the Douala 5e subdivision, Cameroon. Anonymous interviews including both open- and closed-ended questions were conducted with selected participants among drug prescribers, patients attending the health facilities, and customers visiting the pharmacies. Data analysis was performed using StataSE11 software (version 11 SE). A total of 41 prescribers were included in the study. All were aware of national treatment guidelines, but 37.7% reported not waiting for test results before prescribing an antimalarial drug, and the main reason being stock-outs at health facilities. Likewise, artemether+lumefantrine/AL (81%) and dihydroartemisinin+piperaquine (63.5%) were the most commonly used first- and second-line drugs respectively. Biological tests were requested in 99.2% (128/129) of patients in health facilities, 60.0% (74) were performed and 6.2% were rationally managed. Overall 266 (35%) of 760 customers purchased antimalarial drugs, of these, 261 (98.1%) agreed to participate and of these, 69.4% purchased antimalarial drugs without a prescription. ACTs accounted for 90.0% of antimalarials purchased from pharmacies, of which AL was the most commonly prescribed antimalarial drug (67.1%), and only 19.5% of patients were appropriately dispensed. The current data suggest a gap between the knowledge and practices of prescribers as well as patients and customers misconceptions regarding the use of ACTs in Douala 5e subdivision. Despite government efforts to increase public awareness regarding the use of ACTs as first-line treatment for UM, our findings point out a critical need for the development, implementation and scaling-up of control strategies and continuing health education for better use of ACTs (prescription and dispensing) in Cameroon.


Subject(s)
Antimalarials , Artemisinins , Health Facilities , Malaria , Pharmacies , Humans , Artemisinins/therapeutic use , Cameroon , Antimalarials/therapeutic use , Malaria/drug therapy , Cross-Sectional Studies , Female , Male , Adult , Prospective Studies , Drug Therapy, Combination , Middle Aged , Young Adult , Adolescent
4.
Malar J ; 23(1): 138, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720269

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myanmar , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Cross-Sectional Studies , Female , Male , Adolescent , Adult , Mass Drug Administration , Young Adult , Mutation , Child , Child, Preschool , Middle Aged , Quinolines/pharmacology , Quinolines/therapeutic use , Disease Eradication/statistics & numerical data , Piperazines
5.
Nat Commun ; 15(1): 3817, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714692

ABSTRACT

Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Plasmodium falciparum , Humans , Artemether, Lumefantrine Drug Combination/therapeutic use , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Child, Preschool , Child , Male , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Female , Parasitemia/drug therapy , Parasitemia/parasitology , RNA, Ribosomal, 18S/genetics , Malaria/drug therapy , Malaria/parasitology , Infant , HIV Infections/drug therapy , Artemisinins/therapeutic use , Artemisinins/administration & dosage
6.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article in English | MEDLINE | ID: mdl-38708182

ABSTRACT

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Subject(s)
Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
7.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731597

ABSTRACT

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Subject(s)
Artemisia , Artemisinins , Fibroblasts , Fibrosis , Humans , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Actins/metabolism , Actins/genetics , Artesunate/pharmacology , Gene Expression Regulation/drug effects , Artemether/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology
8.
Malar J ; 23(1): 146, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750517

ABSTRACT

BACKGROUND: In 2020, during the COVID-19 pandemic, Médecins Sans Frontières (MSF) initiated three cycles of dihydroartemisin-piperaquine (DHA-PQ) mass drug administration (MDA) for children aged three months to 15 years within Bossangoa sub-prefecture, Central African Republic. Coverage, clinical impact, and community members perspectives were evaluated to inform the use of MDAs in humanitarian emergencies. METHODS: A household survey was undertaken after the MDA focusing on participation, recent illness among eligible children, and household satisfaction. Using routine surveillance data, the reduction during the MDA period compared to the same period of preceding two years in consultations, malaria diagnoses, malaria rapid diagnostic test (RDT) positivity in three MSF community healthcare facilities (HFs), and the reduction in severe malaria admissions at the regional hospital were estimated. Twenty-seven focus groups discussions (FGDs) with community members were conducted. RESULTS: Overall coverage based on the MDA card or verbal report was 94.3% (95% confidence interval (CI): 86.3-97.8%). Among participants of the household survey, 2.6% (95% CI 1.6-40.3%) of round 3 MDA participants experienced illness in the preceding four weeks compared to 30.6% (95% CI 22.1-40.8%) of MDA non-participants. One community HF experienced a 54.5% (95% CI 50.8-57.9) reduction in consultations, a 73.7% (95% CI 70.5-76.5) reduction in malaria diagnoses, and 42.9% (95% CI 36.0-49.0) reduction in the proportion of positive RDTs among children under five. A second community HF experienced an increase in consultations (+ 15.1% (- 23.3 to 7.5)) and stable malaria diagnoses (4.2% (3.9-11.6)). A third community HF experienced an increase in consultations (+ 41.1% (95% CI 51.2-31.8) and malaria diagnoses (+ 37.3% (95% CI 47.4-27.9)). There were a 25.2% (95% CI 2.0-42.8) reduction in hospital admissions with severe malaria among children under five from the MDA area. FGDs revealed community members perceived less illness among children because of the MDA, as well as fewer hospitalizations. Other indirect benefits such as reduced household expenditure on healthcare were also described. CONCLUSION: The MDA achieved high coverage and community acceptance. While some positive health impact was observed, it was resource intensive, particularly in this rural context. The priority for malaria control in humanitarian contexts should remain diagnosis and treatment. MDA may be additional tool where the context supports its implementation.


Subject(s)
Antimalarials , Artemisinins , COVID-19 , Malaria , Mass Drug Administration , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Child, Preschool , Infant , Child , Adolescent , COVID-19/epidemiology , Central African Republic/epidemiology , Artemisinins/therapeutic use , Artemisinins/administration & dosage , Mass Drug Administration/statistics & numerical data , Female , Male , Malaria/drug therapy , SARS-CoV-2 , Quinolines/administration & dosage , Quinolines/therapeutic use
9.
Eur J Med Res ; 29(1): 293, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773551

ABSTRACT

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.


Subject(s)
Apoptosis , Artesunate , Cell Cycle Checkpoints , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Artesunate/pharmacology , Artesunate/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Animals , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Mice , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice, Nude , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , DNA Damage/drug effects , Xenograft Model Antitumor Assays , Artemisinins/pharmacology , Artemisinins/therapeutic use , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology
10.
Planta ; 259(6): 152, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735012

ABSTRACT

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Subject(s)
Acetates , Artemisia annua , Artemisinins , Cyclopentanes , Methyltransferases , Oxylipins , Phylogeny , Artemisia annua/genetics , Artemisia annua/enzymology , Artemisia annua/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Artemisinins/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Acetates/pharmacology , Acetates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Salicylic Acid/metabolism
11.
Pak J Pharm Sci ; 37(1): 43-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741399

ABSTRACT

Drug-resistant malaria is a global risk to the modern world. Artremisinin (ART) is one of the drugs of choice against drug-resistant (malaria) which is practically insoluble in water. The objective of our study was to improve the solubility of artemisinin (ART) via development of binary complexes of ART with sulfobutylether ß-cyclodextrins (SBE7 ß-CD), sulfobutylether ß-cyclodextrins (SBE7 ß-CD) and oleic acid (ternary complexes). These are prepared in various drugs to excipients ratios by physical mixing (PM) and solvent evaporation (SE) methods. Characterizations were achieved by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and attenuated total reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The aqueous-solubility in binary complexes was 12-folds enhanced than ternary complexes. Dissolution of binary and ternary complexes of artemisinin in simulated gastric fluid (pH 1.6) was found highest and 35 times higher for ternary SECx. The crystallinity of artemisinin was decreased in physical mixtures (PMs) while SECx exhibited displaced angles. The attenuated-intensity of SECx showed least peak numbers with more displaced-angles. SEM images of PMs and SECx showed reduced particle size in binary and ternary systems as compared to pure drug-particles. ATR-FTIR spectra of binary and ternary complexes revealed bonding interactions among artemisinin, SBE7 ß-CD and oleic acid.


Subject(s)
Artemisinins , Oleic Acid , Solubility , X-Ray Diffraction , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Artemisinins/chemistry , Oleic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Antimalarials/chemistry , Excipients/chemistry , Drug Compounding
12.
Parasitol Res ; 123(5): 209, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740597

ABSTRACT

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Subject(s)
Antimalarials , Artemisinins , Polymorphism, Genetic , Artemisinins/therapeutic use , Humans , Antimalarials/therapeutic use , Prevalence , Drug Resistance/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Protozoan Proteins/genetics , Asia, Southeastern/epidemiology
13.
PLoS One ; 19(5): e0297416, 2024.
Article in English | MEDLINE | ID: mdl-38758832

ABSTRACT

BACKGROUND: Malaria treatment is faced with the challenge of access, affordability, availability, and quality of antimalarial medicines. Affordable medicines facility-malaria (AMFm) program and subsequently Co-payment mechanism were developed to help increase access to quality assured Artemisinin-based combination therapies (ACTs) in seven countries in sub-Saharan Africa. We explored through a qualitative study, experience of healthcare personnel on Co-payment mechanism and the implication on its use in private drug outlets in Uganda. METHOD: Private drug outlets that reported stocking antimalarial agents in moderate-to-high and low malaria transmission settings were purposively selected for inclusion in the study. In each drug outlet, data was collected from a pharmacist/dispenser through key informant interview. The interview was done using a key informant interview guide which covered the following areas, (i) sociodemographic characteristics, ii) awareness of healthcare personnel on the co-payment mechanism, (iii) awareness of healthcare personnel on quality assured artemisinin combination therapies (QAACT), (iv) antimalarial stocking in private drug outlets, (v) antimalarial dispensing prices, (vi) considerations made while stocking, and pricing antimalarial agents, vii) challenges in antimalarial dispensing, and (viii) access to antimalarial agents in private drug outlets. Data was managed using Atlas.ti and analyzed using framework methodology. RESULTS: Data was collected from 25 key informants (12 pharmacists and 13 dispensers). Five themes emerged following data analysis, (i) antimalarial stocking influenced by price and client demand, (ii) access and purchasing behavior of drug outlet clients, (iii) basis of dispensing antimalarial agents in private drug outlets, (iv) awareness of QAACT, and (v) awareness of Co-payment mechanism. None of the study participants was aware of the existence of Co-payment mechanism and QAACT in the private sector. Duocotecin brand of ACTs was the most mentioned and dispensed ACT among the study participants in private drug outlets. Nearly all the pharmacists/dispensers said that many clients who request to purchase ACTs don't come with a prescription and prefer buying cheaper antimalarial agents. Study participants reported stocking and selling both ACTs and non-ACT antimalarial agents in the drug outlets. Pharmacists/dispensers in the drug outlets reported that most clients could not afford buying a full dose of an ACT. None of the study participants considered using Co-payment mechanism while stocking ACTs in the drug outlets. CONCLUSION: There is lack of awareness and utilization of Co-payment mechanism in stocking, pricing, and dispensing of ACTs among pharmacists/dispensers in private drug outlets in Uganda. The antimalarial dispensing in drug outlets was mostly based on prescriptions, clients' preferences, and medicine affordability. The Ministry of Health needs to create demand for Co-payment mechanism through public awareness campaigns, training of healthcare personnel and behavior change communication in the private sector.


Subject(s)
Antimalarials , Health Personnel , Malaria , Uganda , Humans , Antimalarials/economics , Antimalarials/supply & distribution , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/economics , Health Personnel/economics , Artemisinins/economics , Artemisinins/supply & distribution , Private Sector/economics , Female , Health Services Accessibility/economics , Male
14.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Article in English | MEDLINE | ID: mdl-38716192

ABSTRACT

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Microfilament Proteins , Plasmodium falciparum , Adult , Female , Humans , Male , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Combinations , Drug Resistance/genetics , Genotype , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Microfilament Proteins/genetics , Microsatellite Repeats/genetics , Mutation , Nigeria , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Polymorphism, Genetic , Protozoan Proteins/genetics , Recurrence
15.
Sci Rep ; 14(1): 12556, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821986

ABSTRACT

Diabetic patients are at high risk of developing lacrimal gland dysfunction, and the antimalarial drug artesunate (ART) was recently used to induce experimental-induced diabetes mellitus. This study's objective is to investigate the lacrimal gland alteration and the effect of ART on experimentally induced diabetes rat models and its related mechanisms. Forty rats were divided into five groups (8 rats/group): healthy control group (HC), diabetic group (DM), 50 mg/kg ART intervention diabetic group [DM + ART (50 mg/kg)], 100 mg/kg ART intervention diabetic group [DM + ART (100 mg/kg)] and 6 U/kg Insulin intervention diabetic group (DM + INS). The morphology of the eyeball and lacrimal gland tissues was determined using hematoxylin and eosin staining. In addition, external lacrimal glands were harvested for electronic microscopic examination, NFκB1, and TNF-α protein expression evaluation by immunohistochemistry and mRNA expression analysis by RT-PCR. Histopathological and ultrastructural changes suggest ART intervention has an improved structural effect. Protein expression of NFκB1 in the DM + ART (100 mg/kg) group was decreased. TNF-α significantly decreased in the DM + ART (50 mg/kg) and insulin groups. We concluded that ART improves structural changes in a lacrimal gland in diabetic rats. The present study provides further evidence of the therapeutic effect of ART on the lacrimal gland of diabetic rats by decreasing the expression of NFκB1 and TNF-α.


Subject(s)
Artesunate , Diabetes Mellitus, Experimental , Lacrimal Apparatus , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Rats , Male , Tumor Necrosis Factor-alpha/metabolism , Artemisinins/pharmacology , Artemisinins/therapeutic use
16.
Malar J ; 23(1): 150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755607

ABSTRACT

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Mutation , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Artemisinins/pharmacology , Antimalarials/pharmacology , Protozoan Proteins/genetics , Drug Resistance/genetics , Rwanda , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Humans , Antigens, Protozoan/genetics , Prevalence , Child , Young Adult , Adolescent , Adult , Child, Preschool
17.
Sci Rep ; 14(1): 11704, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778121

ABSTRACT

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Subject(s)
Artemisinins , Cell Proliferation , DNA Damage , ErbB Receptors , GTP Phosphohydrolases , Lung Neoplasms , Membrane Proteins , Signal Transduction , ErbB Receptors/metabolism , Humans , Cell Proliferation/drug effects , Artemisinins/pharmacology , DNA Damage/drug effects , Signal Transduction/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , GTP Phosphohydrolases/metabolism , Animals , Apoptosis/drug effects , Molecular Docking Simulation , A549 Cells , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Protein Binding
18.
Phytomedicine ; 129: 155644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761524

ABSTRACT

BACKGROUND: A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS: Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS: Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS: Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION: Our experiments conducted in mice do not support the pro-drug hypothesis.


Subject(s)
Antimalarials , Artemisia , Artemisinins , Malaria , Plant Extracts , Plasmodium berghei , Powders , Antimalarials/pharmacology , Animals , Artemisia/chemistry , Malaria/drug therapy , Plasmodium berghei/drug effects , Artemisinins/pharmacology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Artemisia annua/chemistry , Suspensions , Male
19.
FASEB J ; 38(10): e23677, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775792

ABSTRACT

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Subject(s)
Artemisinins , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , NF-E2-Related Factor 2 , Artemisinins/pharmacology , Animals , NF-E2-Related Factor 2/metabolism , Autophagy/drug effects , Doxorubicin/adverse effects , Doxorubicin/toxicity , Mice , Ferroptosis/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Mice, Inbred C57BL , Cell Line , Rats
20.
Phytomedicine ; 129: 155640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714091

ABSTRACT

BACKGROUND: The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE: The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS: We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION: In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.


Subject(s)
Antiprotozoal Agents , Artemisinins , Leishmania , Peroxides , Leishmania/drug effects , Peroxides/pharmacology , Peroxides/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Humans , Leishmaniasis/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...