Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.737
Filter
1.
Curr Protoc ; 4(5): e1053, 2024 May.
Article in English | MEDLINE | ID: mdl-38752927

ABSTRACT

The recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) mouse model is a complex model of rheumatoid arthritis (RA). In GIA, autoimmune arthritis is induced by repeated intraperitoneal immunization of genetically susceptible BALB/c mice with the rhG1 antigen emulsified in the adjuvant dimethyldioctadecylammonium (DDA). This article describes the steps for producing and purifying the rhG1 antigen, the immunization protocol, methods for following the clinical picture of arthritis, and the evaluation of relevant laboratory parameters. In this model, the autoimmune arthritis develops stepwise, similar to RA: First is the preclinical stage (after the first immunization, days 0-20) with no sign of inflammation but detectable T and B cell activation; next, the stage of early arthritis (after the second immunization, days 21-41), where the first definitive signs of arthritis appear together with autoantibody production; and then the severe late-stage arthritis (after the third immunization, after day 42), which presents with massive inflammation of the limbs, leading to cartilage and bone destruction and finally ankylosis. The protocols described here provide sufficient information for investigators to use the GIA model to study different aspects of autoimmune arthritis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of recombinant human proteoglycan aggrecan-G1 domain (rhG1)-induced arthritis (GIA) Support Protocol 1: Production of rhG1-Xa-mFc2a fusion protein with CHOK1 mammalian expression system Support Protocol 2: Purification of the rhG1-Xa-mFc2a fusion protein by affinity chromatography Support Protocol 3: Preparation of DDA adjuvant Support Protocol 4: Clinical assessment of arthritis Support Protocol 5: Measurement of serum antibody levels and cytokines Support Protocol 6: Measurement of rhG1-induced proliferation and cytokine production in spleen cell culture Support Protocol 7: Histological assessment of arthritic limbs Support Protocol 8: Evaluation of arthritis with micro-computed tomography.


Subject(s)
Aggrecans , Disease Models, Animal , Mice, Inbred BALB C , Recombinant Proteins , Animals , Aggrecans/metabolism , Mice , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology
2.
Bone Res ; 12(1): 31, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782893

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease. Early studies hold an opinion that gut microbiota is environmentally acquired and associated with RA susceptibility. However, accumulating evidence demonstrates that genetics also shape the gut microbiota. It is known that some strains of inbred laboratory mice are highly susceptible to collagen-induced arthritis (CIA), while the others are resistant to CIA. Here, we show that transplantation of fecal microbiota of CIA-resistant C57BL/6J mice to CIA-susceptible DBA/1J mice confer CIA resistance in DBA/1J mice. C57BL/6J mice and healthy human individuals have enriched B. fragilis than DBA/1J mice and RA patients. Transplantation of B. fragilis prevents CIA in DBA/1J mice. We identify that B. fragilis mainly produces propionate and C57BL/6J mice and healthy human individuals have higher level of propionate. Fibroblast-like synoviocytes (FLSs) in RA are activated to undergo tumor-like transformation. Propionate disrupts HDAC3-FOXK1 interaction to increase acetylation of FOXK1, resulting in reduced FOXK1 stability, blocked interferon signaling and deactivation of RA-FLSs. We treat CIA mice with propionate and show that propionate attenuates CIA. Moreover, a combination of propionate with anti-TNF etanercept synergistically relieves CIA. These results suggest that B. fragilis or propionate could be an alternative or complementary approach to the current therapies.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Gastrointestinal Microbiome , Histone Deacetylases , Mice, Inbred C57BL , Synoviocytes , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/microbiology , Animals , Histone Deacetylases/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Mice , Synoviocytes/metabolism , Synoviocytes/drug effects , Synoviocytes/pathology , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Forkhead Transcription Factors/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Mice, Inbred DBA , Male , Signal Transduction/drug effects
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731877

ABSTRACT

Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.


Subject(s)
Arthritis, Experimental , DNA, Viral , Disease Models, Animal , Herpesvirus 4, Human , Mice, Inbred C57BL , Toll-Like Receptor 9 , Animals , Toll-Like Receptor 9/metabolism , Mice , Herpesvirus 4, Human/physiology , Arthritis, Experimental/virology , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , DNA, Viral/genetics , Interleukin-17/metabolism , Male , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology
4.
PLoS One ; 19(5): e0292028, 2024.
Article in English | MEDLINE | ID: mdl-38691538

ABSTRACT

APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells in vitro. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19+IgM+CD5+ cell population in draining lymph nodes and an increase of CD19+CD21hiCD23hi (B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production in vitro.


Subject(s)
Arthritis, Experimental , B-Lymphocytes, Regulatory , Mice, Transgenic , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , Mice , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , B-Lymphocytes, Regulatory/immunology , Interleukin-10/metabolism , Lymph Nodes/immunology , Lymph Nodes/pathology , Spleen/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
5.
Nanomedicine ; 55: 102716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38738529

ABSTRACT

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.


Subject(s)
Arthritis, Rheumatoid , Dexamethasone , Polymers , Animals , Dexamethasone/chemistry , Dexamethasone/pharmacokinetics , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Mice , Tissue Distribution , Polymers/chemistry , Polymers/pharmacokinetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
6.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750493

ABSTRACT

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Subject(s)
Ficolins , Inflammation , Lectins , Macrophages , Mice, Inbred C57BL , Phenotype , Animals , Macrophages/metabolism , Macrophages/drug effects , Lectins/genetics , Lectins/metabolism , Mice , Inflammation/genetics , Inflammation/pathology , Macrophage Activation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/genetics , Cell Polarity/drug effects , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Signal Transduction/drug effects
7.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38688063

ABSTRACT

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Subject(s)
Arthritis, Rheumatoid , Isoquinolines , Signal Transduction , Animals , Humans , Male , Rats , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/chemical synthesis , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Dose-Response Relationship, Drug , Drug Discovery , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Molecular Structure , Signal Transduction/drug effects , Structure-Activity Relationship , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology
8.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675650

ABSTRACT

Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.


Subject(s)
Arthritis, Experimental , C-Reactive Protein , Freund's Adjuvant , Interleukin-6 , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/chemically induced , C-Reactive Protein/metabolism , Interleukin-6/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Sapindaceae/chemistry , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar
9.
In Vivo ; 38(3): 1182-1191, 2024.
Article in English | MEDLINE | ID: mdl-38688626

ABSTRACT

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Subject(s)
Arthritis, Rheumatoid , Hyperplasia , Inflammation , Phlorhizin , Signal Transduction , Synoviocytes , TOR Serine-Threonine Kinases , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , TOR Serine-Threonine Kinases/metabolism , Rats , Signal Transduction/drug effects , Phlorhizin/pharmacology , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism , Synoviocytes/drug effects , Synoviocytes/metabolism , Synoviocytes/pathology , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Synovial Membrane/pathology , Disease Models, Animal , Cytokines/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Male , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Rats, Wistar , Proto-Oncogene Proteins c-akt/metabolism
10.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644475

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Subject(s)
Arthritis, Rheumatoid , Macrophages , MicroRNAs , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Humans , Male , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cell Proliferation , Extracellular Vesicles/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred DBA , MicroRNAs/genetics , MicroRNAs/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synoviocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674027

ABSTRACT

Stem cell therapy stands out as a promising avenue for addressing arthritis treatment. However, its therapeutic efficacy requires further enhancement. In this study, we investigated the anti-arthritogenic potential of human amniotic mesenchymal stem cells (AMM) overexpressing insulin-like growth factor 1 (IGF-1) in a collagen-induced mouse model. The IGF-1 gene was introduced into the genome of AMM through transcription activator-like effector nucleases (TALENs). We assessed the in vitro immunomodulatory properties and in vivo anti-arthritogenic effects of IGF-1-overexpressing AMM (AMM/I). Co-culture of AMM/I with interleukin (IL)-1ß-treated synovial fibroblasts significantly suppressed NF-kB levels. Transplantation of AMM/I into mice with collagen-induced arthritis (CIA) led to significant attenuation of CIA progression. Furthermore, AMM/I administration resulted in the expansion of regulatory T-cell populations and suppression of T-helper-17 cell activation in CIA mice. In addition, AMM/I transplantation led to an increase in proteoglycan expression within cartilage and reduced infiltration by inflammatory cells and also levels of pro-inflammatory factors including cyclooxygenase-2 (COX-2), IL-1ß, NF-kB, and tumor necrosis factor (TNF)-α. In conclusion, our findings suggest that IGF-1 gene-edited human AMM represent a novel alternative therapeutic strategy for the treatment of arthritis.


Subject(s)
Arthritis, Experimental , Gene Editing , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Animals , Humans , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/immunology , Mesenchymal Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Mice, Inbred DBA , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism
12.
Int Immunopharmacol ; 133: 111727, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38636369

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and management of it still a challenge. Given report evaluates protective effect of phlorizin on RA and also postulates the molecular mechanism of its action. Bovine type II collagen (CIA) and Freund's incomplete adjuvant (1:1 and 1 mg/ml) was administered on 1st and 8th day of protocol to induce RA in rats and treatment with phlorizin 60 and 120 mg/kg was started after 4th week of protocol. Level of inflammatory cytokines and expression of proteins were estimated in phlorizin treated RA rats. Moreover in-vitro study was performed on Fibroblast-like synoviocytes (FLSs) and effect of phlorizin was estimated on proliferation, apoptosis and expression of mTOR pathway protein after stimulating these cell lines with Tumour Necrosis Factor alpha (TNF-α). Data of study suggest that phlorizin reduces inflammation and improves weight in CIA induced RA rats. Level of inflammatory cytokines in the serum and expression of Akt/PI3K/mTOR proteins in the join tissue was reduced in phlorizin treated RA rats. Phlorizin also reported to reverse the histopathological changes in the joint tissue of RA rats. In-vitro study supports that phlorizin reduces proliferation and no apoptotic effect on TNF-α stimulated FLSs. Expression of Akt/PI3K/mTOR proteins also downregulated in phlorizin treated TNF-α stimulated FLSs. In conclusion, phlorizin protects inflammation and reduces injury to the synovial tissues in RA, as it reduces autophagy by regulating Akt/PI3K/mTOR pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Hyperplasia , Phlorhizin , Signal Transduction , Synoviocytes , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Signal Transduction/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Synoviocytes/drug effects , Synoviocytes/pathology , Hyperplasia/drug therapy , Rats , Phlorhizin/pharmacology , Phlorhizin/therapeutic use , Cytokines/metabolism , Male , Synovial Membrane/drug effects , Synovial Membrane/pathology , Cell Proliferation/drug effects , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Rats, Wistar , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
J Ethnopharmacol ; 329: 118138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565410

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms. AIM OF THE STUDY: The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents. MATERIALS AND METHODS: The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NOX content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts. RESULTS: According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1ß, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract. CONCLUSIONS: The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Cytokines , Freund's Adjuvant , Janus Kinase 1 , Phoeniceae , Plant Extracts , STAT3 Transcription Factor , Seeds , Animals , Phoeniceae/chemistry , STAT3 Transcription Factor/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Janus Kinase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Seeds/chemistry , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/isolation & purification , Rats , Phytochemicals/analysis , Phytochemicals/pharmacology , Signal Transduction/drug effects , Rats, Wistar , Rats, Sprague-Dawley , Antioxidants/pharmacology
14.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38614265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Male , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Antirheumatic Agents/pharmacology , Angiogenesis
15.
Biochem Pharmacol ; 224: 116230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643905

ABSTRACT

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Subject(s)
Arthritis, Experimental , Bone Resorption , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Animals , Mice , NFATC Transcription Factors/metabolism , RAW 264.7 Cells , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/prevention & control , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Experimental/chemically induced , Osteogenesis/drug effects , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Male , Signal Transduction/drug effects , CSK Tyrosine-Protein Kinase/metabolism , Molecular Docking Simulation , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors
16.
Indian J Pharmacol ; 56(2): 112-119, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38687315

ABSTRACT

CONTEXT: Ixora coccinea leaves possess antioxidant, anti-inflammatory, antinociceptive, antimutagenic, and gastroprotective properties. On this background, its antiarthritic potential was evaluated. AIMS: The objective is to evaluate the effect of Ethanolic extract of Ixora coccinea leaves (EEICL) on complete Freund's adjuvant-induced arthritis in rats. SETTINGS AND STUDY DESIGN: PG research laboratory, Pharmacology Department, MKCG Medical College, Berhampur, Odisha. SUBJECTS AND METHODS: Thirty-six Wistar albino rats were randomly distributed into sixgroups (n = 6) as follows: Gr 1 (normal control)-DW p.o, Gr-2 (disease control [DC] - Tween 80 p.o), Gr-3 (piroxicam 0.9 mg/kg p.o), Gr-4 (EEICL-1 g/kg, p.o, Gr 4-EEICL-1.5 g/kg p.o, Gr 5-ED50 (0.82 g/kg) + piroxicam (0.45 mg/kg) p.o. After induction of arthritis, drugs, and vehicles were administered daily from 5th to 25th day. On 0, 5th, 10th, 15th, and 25th day, parameters like body weight, rotarod fall time, paw volume displacement, and arthritis index were measured. On the last day, Erythrocyte sedimentation rate (ESR), tissue malondialdehyde (MDA), and histopathological analysis were done. STATISTICAL ANALYSIS USED: Analysis of parametric data was done by one-way ANOVA and nonparametric data by Kruskal-Wallis test using graph pad prism 7.0. P < 0.05 was considered statistically significant. RESULTS: EEICL (1.5 mg/kg) showed anti-arthritic effect compared with DC. Rotarod fall-off time 137.5 ± 2.5 sec and body weight (139 ± 12.74 g) were increased significantly. The percentage inhibition of paw volume was increased(52%) whereas arthritic score(0.33), ESR(3.51mm/hr), synovial tissue MDA level (0.62±0.13µmol/gm) and Mankin score(2) were reduced significantly as compared to disease control. CONCLUSIONS: EEICL has anti-arthritic potential in rat model.


Subject(s)
Arthritis, Experimental , Ethanol , Freund's Adjuvant , Plant Extracts , Plant Leaves , Rats, Wistar , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Ethanol/chemistry , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/isolation & purification , Phytotherapy
17.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581988

ABSTRACT

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cell Proliferation , Interleukin-6 , Protein Kinase C-alpha , Synoviocytes , TRPM Cation Channels , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Humans , Interleukin-6/metabolism , Interleukin-6/genetics , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Male , Rats , Fibroblasts/metabolism , Fibroblasts/pathology , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cells, Cultured , Inflammation/metabolism , Inflammation/pathology , Rats, Sprague-Dawley , Female , Signal Transduction
18.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567436

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Subject(s)
Arthritis, Experimental , Escin , Gelatin , Nanoparticles , Rats, Wistar , Zein , Animals , Gelatin/chemistry , Zein/chemistry , Rats , Nanoparticles/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Escin/chemistry , Escin/pharmacology , Male , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Inflammation/drug therapy , Inflammation/pathology , Collagen/chemistry
19.
Eur J Pharmacol ; 972: 176551, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38570082

ABSTRACT

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.


Subject(s)
Arthritis, Rheumatoid , Cell Proliferation , Synoviocytes , Synoviocytes/drug effects , Synoviocytes/metabolism , Synoviocytes/pathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Animals , Cell Proliferation/drug effects , Humans , Rats , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Male , Thyroid Hormones/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Cell Movement/drug effects , Molecular Targeted Therapy , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry
20.
Biochem Biophys Res Commun ; 711: 149888, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38603833

ABSTRACT

OBJECTIVE: To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS: Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS: iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION: Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.


Subject(s)
Osteogenesis , Parathyroid Hormone , Animals , Parathyroid Hormone/administration & dosage , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Osteogenesis/drug effects , Mice , Osteoporosis/drug therapy , Osteoporosis/pathology , Mice, Knockout , Male , X-Ray Microtomography , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/pathology , Mice, Inbred C57BL , Disease Models, Animal , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Bone Density/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...