Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
Arthritis Res Ther ; 26(1): 107, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802975

ABSTRACT

BACKGROUND: Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. PsA disease involves flares, which are associated with increased joint inflammation and tissue remodeling. There is a need for identifying biomarkers related to PsA disease activity and flares to improve the management of PsA patients and decrease flares. The tissue turnover imbalance that occurs during the inflammatory and fibro-proliferative processes during flares leads to an increased degradation and/or reorganization of the extracellular matrix (ECM), where increased proteolysis plays a key role. Hence, protease-mediated fragments of inflammatory and tissue-remodeling components could be used as markers reflecting flares in PsA patients. METHODS: A broad panel of protease-mediated biomarkers reflecting inflammation and tissue remodeling was measured in serum and synovial fluid (SF) obtained from PsA patients experiencing flares (acutely swollen joint[s], PsA-flare). In serum, biomarker levels assessed in PsA-flare patients were compared to controls and in early-diagnosed PsA patients not experiencing flares (referred to as PsA without flare). Furthermore, the biomarker levels assessed in SF from PsA-flare patients were compared to the levels in SF of osteoarthritis (OA) patients. RESULTS: In serum, levels of the PRO-C3 and C3M, reflecting formation and degradation of the interstitial matrix, were found significantly elevated in PsA-flare compared to controls and PsA without flare. The remodeling marker of the basement membrane, PRO-C4, was significantly elevated in PsA-flare compared to PsA without flare. The inflammation and immune cell activity related markers, CRPM, VICM, and CPa9-HNE were significantly elevated in PsA-flare patients compared to controls and PsA without flare. In addition, VICM (AUC = 0.71), CPa9-HNE (AUC = 0.89), CRPM (AUC = 0.76), and PRO-C3 (AUC = 0.86) showed good discriminatory performance for separating PsA-flare from PsA without flare. In SF, the macrophage activity marker, VICM, was significantly elevated whereas the type II collagen formation marker, PRO-C2, was significantly reduced in the PsA-flare compared to OA. The combination of five serum markers reflecting type III and IV collagen degradation (C3M and C4M, respectively), type III and VI collagen formation (PRO-C3 and PRO-C6, respectively), and neutrophil activity (CPa9-HNE) showed an excellent discriminatory performance (AUC = 0.98) for separating PsA-flare from PsA without flares. CONCLUSIONS: The serum biomarker panel of C3M, C4M, PRO-C3, PRO-C6, and CPa9-HNE reflecting synovitis, enthesitis, and neutrophil activity may serve as novel tool for quantitatively monitoring flares in PsA patients.


Subject(s)
Arthritis, Psoriatic , Biomarkers , Humans , Arthritis, Psoriatic/blood , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/metabolism , Biomarkers/blood , Male , Female , Middle Aged , Adult , Synovial Fluid/metabolism , Peptide Hydrolases/blood , Peptide Hydrolases/metabolism , Inflammation/blood , Inflammation/metabolism , Aged , Peptides/blood
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731900

ABSTRACT

Psoriasis is a highly prevalent dermatological disease associated with an increased systemic inflammatory response. In addition, joint involvement is also present in around 20% of patients. Therefore, treatment modalities used in this condition should be simultaneously effective at improving skin manifestations, reducing inflammation, and addressing psoriatic arthritis when present. Twenty years ago, the introduction of biologic treatments for psoriasis was a turning point in the management of this condition, offering an effective and reasonably safe option for patients whose disease could not be adequately controlled with conventional therapies. At the moment, Janus Kinase inhibitors (JAKis) are a new class of promising molecules in the management of psoriasis. They are orally administered and can show benefits in patients who failed biologic therapy. We conducted a scoping review in order to identify randomized-controlled trials that investigated different JAKis in patients with plaque psoriasis and psoriatic arthritis, with an emphasis on molecules that have been approved by the European Medicines Agency and the Food and Drug Administration. The added value of this study is that it collected information about JAKis approved for two different indications, plaque psoriasis and psoriatic arthritis, in order to provide an integrated understanding of the range of effects that JAKis have on the whole spectrum of psoriasis manifestations.


Subject(s)
Janus Kinase Inhibitors , Janus Kinases , Psoriasis , STAT Transcription Factors , Signal Transduction , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , STAT Transcription Factors/metabolism , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism
3.
Front Immunol ; 15: 1355824, 2024.
Article in English | MEDLINE | ID: mdl-38799447

ABSTRACT

Objectives: IL26 levels are elevated in the blood and synovial fluid of patients with inflammatory arthritis. IL26 can be produced by Th17 cells and locally within joints by tissue-resident cells. IL26 induces osteoblast mineralization in vitro. As osteoproliferation and Th17 cells are important factors in the pathogenesis of axial spondyloarthritis (axSpA), we aimed to clarify the cellular sources of IL26 in spondyloarthritis. Methods: Serum, peripheral blood mononuclear cells (n = 15-35) and synovial tissue (n = 3-9) of adult patients with axSpA, psoriatic arthritis (PsA) and rheumatoid arthritis (RA) and healthy controls (HCs, n = 5) were evaluated by ELISA, flow cytometry including PrimeFlow assay, immunohistochemistry and immunofluorescence and quantitative PCR. Results: Synovial tissue of axSpA patients shows significantly more IL26-positive cells than that of HCs (p < 0.01), but numbers are also elevated in PsA and RA patients. Immunofluorescence shows co-localization of IL26 with CD68, but not with CD3, SMA, CD163, cadherin-11, or CD90. IL26 is elevated in the serum of RA and PsA (but not axSpA) patients compared with HCs (p < 0.001 and p < 0.01). However, peripheral blood CD4+ T cells from axSpA and PsA patients show higher positivity for IL26 in the PrimeFlow assay compared with HCs. CD4+ memory T cells from axSpA patients produce more IL26 under Th17-favoring conditions (IL-1ß and IL-23) than cells from PsA and RA patients or HCs. Conclusion: IL26 production is increased in the synovial tissue of SpA and can be localized to CD68+ macrophage-like synoviocytes, whereas circulating IL26+ Th17 cells are only modestly enriched. Considering the osteoproliferative properties of IL26, this offers new therapeutic options independent of Th17 pathways.


Subject(s)
Antigens, CD , Arthritis, Psoriatic , Interleukins , Synoviocytes , Humans , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Synoviocytes/metabolism , Synoviocytes/immunology , Synoviocytes/pathology , Male , Adult , Female , Antigens, CD/metabolism , Interleukins/metabolism , Interleukins/blood , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Axial Spondyloarthritis/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Joints/pathology , Joints/immunology , Joints/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/pathology
4.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672485

ABSTRACT

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Dendritic Cells , Spleen , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Differentiation/drug effects , Spleen/cytology , Spleen/metabolism , Spleen/drug effects , Spleen/immunology , Mice , Thymosin/pharmacology , Thymosin/metabolism , Peptides/pharmacology , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/immunology , Humans , Mice, Inbred C57BL , Immune Tolerance/drug effects
5.
Microbiol Spectr ; 12(4): e0115423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441468

ABSTRACT

Previous studies have profiled the gut microbiota among psoriatic patients compared to that among healthy individuals. However, a comprehensive understanding of the magnitude, direction, and detailed compositional and functional profiles remains limited. Additionally, research exploring the gut microbiota in the context of both plaque psoriasis (PsO) and psoriatic arthritis (PsA) is lacking. To assess the taxonomic and functional characteristics of the gut microbiota in PsO and PsA patients and investigate potential links between the gut microbiota and disease pathogenesis. We collected fecal samples from 70 psoriatic patients (44 PsO and 26 PsA) and 25 age- and gender-matched healthy controls (HC) and employed deep metagenomic sequencing to characterize their gut microbiota. We noted significant alternations in the gut microbiota compositions of both PsO and PsA patients compared to those of HC. Despite limited effect sizes in alpha diversity (12.3% reduction of microbial richness but unchanged evenness in psoriatic patients) and beta diversity (disease accounts for 3.5% of total variations), we consistently observed substantial reductions of Eubacterium rectale in both PsO and PsA patients, with PsA patients exhibiting even lower levels of E. rectale than PsO patients. Additionally, two Alistipes species were also depleted in psoriatic patients. These microorganisms are known to play crucial roles in carbohydrate metabolism pathways, mainly producing short-chain fatty acids with anti-inflammatory effects. Overall, our observations supplemented the profiling of altered gut microbiota in patients with PsO and PsA at the species level and described a link between the dominant short-chain fatty acid-producing bacterial species and systemic immunity in psoriatic patients. IMPORTANCE: In this observational clinical study with sufficient sample size and metagenomic sequencing to profile the gut microbiota, we identified consistent signals of the depleted abundance of Eubacterium rectale and related functional genes among psoriatic patients, including those with psoriatic arthritis. E. rectale may serve as an ecologically important functional unit in the gut microbiota, holding potential as a diagnostic marker and target for therapeutic interventions to achieve lasting effects. Our findings provide comprehensive gut microbiota profiling in psoriasis, resolving previous contradictions and generating new hypotheses for further investigation. These insights may significantly impact psoriasis management and related conditions.


Subject(s)
Arthritis, Psoriatic , Gastrointestinal Microbiome , Psoriasis , Humans , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Eubacterium , Psoriasis/diagnosis , Psoriasis/drug therapy , Psoriasis/metabolism , Feces
6.
Arthritis Rheumatol ; 76(4): 647-659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37994265

ABSTRACT

OBJECTIVE: The objective for this study was to evaluate the effects of short chain fatty acids (SCFAs) on arthritic bone remodeling. METHODS: We treated a recently described preclinical murine model of psoriatic arthritis (PsA), R26STAT3Cstopfl/fl CD4Cre mice, with SCFA-supplemented water. We also performed in vitro osteoclast differentiation assays in the presence of serum-level SCFAs to evaluate the direct impact of these microbial metabolites on maturation and function of osteoclasts. We further characterized the molecular mechanism of SCFAs by transcriptional analysis. RESULTS: The osteoporosis condition in R26STAT3Cstopfl/fl CD4Cre animals is attributed primarily to robust osteoclast differentiation driven by an expansion of osteoclast progenitor cells (OCPs), accompanied by impaired osteoblast development. We show that SCFA supplementation can rescue the osteoporosis phenotype in this model of PsA. Our in vitro experiments revealed an inhibitory effect of the SCFAs on osteoclast differentiation, even at very low serum concentrations. This suppression of osteoclast differentiation enabled SCFAs to impede osteoporosis development in R26STAT3Cstopfl/fl CD4Cre mice. Further interrogation revealed that bone marrow-derived OCPs from diseased mice expressed a higher level of SCFA receptors than those of control mice and that the progenitor cells in the bone marrow of SCFA-treated mice presented a modified transcriptomic landscape, suggesting a direct impact of SCFAs on bone marrow progenitors in the context of osteoporosis. CONCLUSION: We demonstrated how gut microbiota-derived SCFAs can regulate distal pathology (ie, osteoporosis) and identified a potential therapeutic option for restoring bone density in rheumatic disease, further highlighting the critical role of the gut-bone axis in these disorders.


Subject(s)
Arthritis, Psoriatic , Osteoporosis , Mice , Animals , Osteoclasts/metabolism , Arthritis, Psoriatic/metabolism , Bone Remodeling , Cell Differentiation , Osteoporosis/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
7.
RMD Open ; 9(4)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123480

ABSTRACT

OBJECTIVE: Undifferentiated, early inflammatory arthritis (EIA) can differentiate into seropositive or seronegative rheumatoid arthritis (RA), peripheral spondyloarthritis (SpA) or remain as seronegative undifferentiated inflammatory arthritis (UIA). Little is known about immune pathways active in the early stages of SpA and seronegative UIA, in contrast to detailed knowledge of seropositive RA. The aim of this study was to examine if specific immune pathways were active in synovial CD4+ and CD8+ T cells in EIA. METHODS: Synovial fluid (SF) samples from 30 patients with EIA were analysed for expression of IL-17A, IFNγ and TNFα in CD8+ or CD4+ T cells. Final clinical diagnoses were made at least 12 months after sample collection, by two independent clinicians blind to the study data. RESULTS: Flow cytometry analysis of all EIA samples indicated considerable variation in synovial IL-17A+CD8+ T cells (Tc17) cell frequencies between patients. The group with a final diagnosis of SpA (psoriatic arthritis or peripheral SpA, n=14) showed a significant enrichment in the percentage of synovial Tc17 cells compared with the group later diagnosed with seronegative UIA (n=10). The small number of patients later diagnosed with seropositive RA (n=6) patients had few Tc17 cells, similar to our previous findings in established disease. In contrast, RA SF contained a significantly higher percentage of CD8+IFNγ+ T cells compared with SpA or seronegative UIA. CONCLUSION: These results suggest that adaptive T cell cytokine pathways differ not only between RA and SpA but also seronegative UIA early in the disease process, with a particular activation of Tc17 pathways in early SpA.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Spondylarthritis , Humans , Interleukin-17 , Synovial Fluid/metabolism , Spondylarthritis/diagnosis , Arthritis, Psoriatic/metabolism
8.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894979

ABSTRACT

Psoriatic arthritis (PsA) is a chronic, systemic, immune-mediated inflammatory disease causing cutaneous and musculoskeletal inflammation that affects 25% of patients with psoriasis. Current methods for evaluating PsA disease activity are not accurate enough for precision medicine. A metabolomics-based approach can elucidate psoriatic disease pathogenesis, providing potential objective biomarkers. With the hypothesis that serum metabolites are associated with skin disease activity, we aimed to identify serum metabolites associated with skin activity in PsA patients. We obtained serum samples from patients with PsA (n = 150) who were classified into mild, moderate and high disease activity groups based on the Psoriasis Area Severity Index. We used solid-phase microextraction (SPME) for sample preparation, followed by data acquisition via an untargeted liquid chromatography-mass spectrometry (LC-MS) approach. Disease activity levels were predicted using identified metabolites and machine learning algorithms. Some metabolites tentatively identified include eicosanoids with anti- or pro-inflammatory properties, like 12-Hydroxyeicosatetraenoic acid, which was previously implicated in joint disease activity in PsA. Other metabolites of interest were associated with dysregulation of fatty acid metabolism and belonged to classes such as bile acids, oxidized phospholipids, and long-chain fatty acids. We have identified potential metabolites associated with skin disease activity in PsA patients.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Humans , Arthritis, Psoriatic/metabolism , Psoriasis/metabolism , Skin/metabolism , Inflammation , Biomarkers/metabolism
9.
Clin Rheumatol ; 42(11): 2959-2969, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37470884

ABSTRACT

OBJECTIVE: To learn which of the simple inflammation markers obtained from routine laboratory tests showed active disease best. METHODS: The study included 256 patients (102 patients with axial spondyloarthritis [axSpA], 54 with psoriatic arthritis [PsA], and 100 with rheumatoid arthritis [RA]). The results of the routine laboratory tests requested during the outpatient clinic visits of the patients were noted. Inflammation-related ratio/indices were then calculated from these laboratory tests. Active and inactive diseases were defined according to the disease activity scores for each disease. Logistic regression and receiver operating characteristic (ROC) analyses were performed to determine the best laboratory marker(s) showing active disease and its cutoff value for all three diseases. RESULTS: C-reactive protein to albumin ratio (CAR) was significantly higher in patients with active axSpA, PsA, and RA diseases than those with inactive diseases (p < 0.001, p = 0.006, and p < 0.001, respectively). In the logistic regression analysis, the CAR was the most important predictor of active disease in patients with axSpA, PsA, and RA. CAR had also showed the active disease at an acceptable level in axSpA and PsA and very well in RA. The cutoff values for active disease in axSpA, PsA, and RA were 0.75, 0.92, and 0.89, respectively. CONCLUSION: CAR may be a promising simple laboratory marker to distinguish active disease in patients with axSpA, PsA, and RA. Key Points • Acute phase reactants and circulating blood cells have become an important target because of the search for a disease activity marker that can be used cheaply and quickly in the daily outpatient routine. • One or more of these simple markers have been previously discussed in various studies with different hypotheses. • We aimed to determine which of the inflammation markers obtained from routine laboratory tests showed active disease and to determine a cutoff value for this/these marker(s). • CAR was the most important simple laboratory marker to distinguish active disease in patients with axSpA, PsA, and RA. In addition, CAR showed the active disease at an acceptable level in axSpA and PsA, and very well in RA.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Axial Spondyloarthritis , Spondylarthritis , Humans , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/metabolism , C-Reactive Protein , Arthritis, Rheumatoid/diagnosis , Biomarkers , Albumins , Inflammation
10.
Sci Immunol ; 8(85): eadd1591, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506196

ABSTRACT

Immune checkpoint inhibitor (ICI) therapies used to treat cancer, such as anti-PD-1 antibodies, can induce autoimmune conditions in some individuals. The T cell mechanisms mediating such iatrogenic autoimmunity and their overlap with spontaneous autoimmune diseases remain unclear. Here, we compared T cells from the joints of 20 patients with an inflammatory arthritis induced by ICI therapy (ICI-arthritis) with two archetypal autoimmune arthritides, rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Single-cell transcriptomic and antigen receptor repertoire analyses highlighted clonal expansion of an activated effector CD8 T cell population in the joints and blood of patients with ICI-arthritis. These cells were identified as CD38hiCD127- CD8 T cells and were uniquely enriched in ICI-arthritis joints compared with RA and PsA and also displayed an elevated interferon signature. In vitro, type I interferon induced CD8 T cells to acquire the ICI-associated CD38hi phenotype and enhanced cytotoxic function. In a cohort of patients with advanced melanoma, ICI therapy markedly expanded circulating CD38hiCD127- T cells, which were frequently bound by the therapeutic anti-PD-1 drug. In patients with ICI-arthritis, drug-bound CD8 T cells in circulation showed marked clonal overlap with drug-bound CD8 T cells from synovial fluid. These results suggest that ICI therapy directly targets CD8 T cells in patients who develop ICI-arthritis and induces an autoimmune pathology that is distinct from prototypical spontaneous autoimmune arthritides.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Humans , Arthritis, Psoriatic/metabolism , Synovial Fluid/metabolism , T-Lymphocytes, Cytotoxic/metabolism
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 249-259, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37283111

ABSTRACT

Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Osteoarthritis , Humans , Interleukins , Osteoarthritis/pathology , Arthritis, Psoriatic/complications , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Cytokines
12.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298466

ABSTRACT

Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Animals , Arthritis, Psoriatic/metabolism , Proteomics , Psoriasis/metabolism , Metabolomics , Biomarkers/metabolism
13.
Arthritis Res Ther ; 25(1): 108, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353811

ABSTRACT

OBJECTIVE: To compare body composition between patients with psoriatic disease (PsD), including cutaneous psoriasis (PsO) and psoriatic arthritis (PsA), and controls, and to explore associations between disease activity and measures of function and metabolic derangement. METHODS: Body composition was assessed by air displacement plethysmography (ADP) and MRI-derived fat segmentation using an automated pipeline (FatSegNet). Function was assessed by Health Assessment Questionnaire (HAQ) and metabolic status by fasting lipid profile, insulin and adiponectin. Active and inactive PsO and PsA were defined by body surface area (BSA) and Psoriasis Area Severity Index (PASI) and minimal disease activity (MDA), respectively. RESULTS: Thirty patients (median disease duration 15 years; median age 52 years) and 30 BMI-matched controls were enrolled. Compared with controls, all MRI-derived body composition parameters-whole-body volume, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), abdominal adipose tissue (AAT), VAT/AAT and VAT/SAT-were higher in the PsD group, specifically, those with active disease. Body mass, body fat, whole-body volume and whole-body VAT were correlated with higher triglycerides, cholesterol:HDL (high-density lipoprotein), insulin resistance and lower adiponectin as well as higher HAQ and lower MDA. CONCLUSIONS: In this pilot study, patients with PsD revealed excessive total adipose tissue and a greater volume of metabolically unfavourable ectopic fat, including VAT, compared with BMI-matched controls, which also correlated with HAQ, disease activity and overall dysmetabolism. We also provide the first evidence in patients with PsD for the clinical application of FatSegNet: a novel, automated and rapid deep learning pipeline for providing accurate MRI-based measurement of fat segmentation. Our findings suggest the need for a more integrated approach to the management of PsD, which considers both the metabolic and inflammatory burden of disease. More specifically, visceral fat is a surrogate marker of uncontrolled PsD and may be an important future target for both pharmacological and lifestyle interventions.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Humans , Middle Aged , Intra-Abdominal Fat/metabolism , Adiponectin/metabolism , Pilot Projects , Arthritis, Psoriatic/diagnostic imaging , Arthritis, Psoriatic/metabolism , Psoriasis/diagnostic imaging , Psoriasis/metabolism
14.
Cell Rep ; 42(5): 112514, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37195862

ABSTRACT

CD69+CD103+ tissue-resident memory T (TRM) cells are important drivers of inflammation. To decipher their role in inflammatory arthritis, we apply single-cell, high-dimensional profiling to T cells from the joints of patients with psoriatic arthritis (PsA) or rheumatoid arthritis (RA). We identify three groups of synovial CD8+CD69+CD103+ TRM cells: cytotoxic and regulatory T (Treg)-like TRM cells are present in both PsA and RA, while CD161+CCR6+ type 17-like TRM cells with a pro-inflammatory cytokine profile (IL-17A+TNFα+IFNγ+) are specifically enriched in PsA. In contrast, only one population of CD4+CD69+CD103+ TRM cells is detected and at similarly low frequencies in both diseases. Type 17-like CD8+ TRM cells have a distinct transcriptomic signature and a polyclonal, but distinct, TCR repertoire. Type 17-like cells are also enriched in CD8+CD103- T cells in PsA compared with RA. These findings illustrate differences in the immunopathology of PsA and RA, with a particular enrichment for type 17 CD8+ T cells in the PsA joint.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Humans , Arthritis, Psoriatic/metabolism , Memory T Cells , T-Lymphocyte Subsets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Arthritis, Rheumatoid/metabolism , Immunologic Memory
15.
Front Immunol ; 14: 1133435, 2023.
Article in English | MEDLINE | ID: mdl-37033920

ABSTRACT

Objectives: 1) To characterize the inflammatory proteome of synovial fluid (SF) from patients with Psoriatic Arthritis (PsA) using a high-quality throughput proteomic platform, and 2) to evaluate its potential to stratify patients according to clinical features. Methods: Inflammatory proteome profile of SF from thirteen PsA patients with active knee arthritis were analyzed using proximity extension assay (PEA) technology (Olink Target 96 Inflammation panel). Four patients with OA were included as control group. Results: Seventy-nine inflammation-related proteins were detected in SF from PsA patients (SF-PsA). Unsupervised analyzes of the molecular proteome profile in SF-PsA identified two specific phenotypes characterized by higher or lower levels of inflammation-related proteins. Clinically, SF-PsA with higher levels of inflammatory proteins also showed increased systemic inflammation and altered glucose and lipid metabolisms. Besides, SF from PsA patients showed 39 out of 79 proteins significantly altered compared to SF-OA specifically related to cell migration and inflammatory response. Among these, molecules such as TNFα, IL-17A, IL-6, IL-10, IL-8, ENRAGE, CCL20, TNFSF-14, OSM, IFNγ, MCP-3, CXCL-11, MCP4, CASP-8, CXCL-6, CD-6, ADA, CXCL-10, TNFß and IL-7 showed the most significantly change. Conclusion: This is the first study that characterizes the inflammatory landscape of synovial fluid of PsA patients by analyzing a panel of 92 inflammatory proteins using PEA technology. Novel SF proteins have been described as potential pathogenic molecules involved in the pathogenesis of PsA. Despite the flare, inflammatory proteome could distinguish two different phenotypes related to systemic inflammation and lipid and glucose alterations.


Subject(s)
Arthritis, Psoriatic , Synovial Fluid , Synovial Fluid/chemistry , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Humans , Male , Female , Adult , Middle Aged , Synoviocytes/metabolism , Cytokines/analysis , Knee/pathology
16.
J Heart Lung Transplant ; 42(1): 53-63, 2023 01.
Article in English | MEDLINE | ID: mdl-37014805

ABSTRACT

BACKGROUND: Long term outcomes of lung transplantation are impacted by the occurrence of chronic lung allograft dysfunction (CLAD). Recent evidence suggests a role for the lung microbiome in the occurrence of CLAD, but the exact mechanisms are not well defined. We hypothesize that the lung microbiome inhibits epithelial autophagic clearance of pro-fibrotic proteins in an IL-33 dependent manner, thereby augmenting fibrogenesis and risk for CLAD. METHODS: Autopsy derived CLAD and non-CLAD lungs were collected. IL-33, P62 and LC3 immunofluorescence was performed and assessed using confocal microscopy. Pseudomonas aeruginosa (PsA), Streptococcus Pneumoniae (SP), Prevotella Melaninogenica (PM), recombinant IL-33 or PsA-lipopolysaccharide was co-cultured with primary human bronchial epithelial cells (PBEC) and lung fibroblasts in the presence or absence of IL-33 blockade. Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate IL-33 expression, autophagy, cytokines and fibroblast differentiation markers. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of Beclin-1. RESULTS: Human CLAD lungs demonstrated markedly increased expression of IL-33 and reduced basal autophagy compared to non-CLAD lungs. Exposure of co-cultured PBECs to PsA, SP induced IL-33, and inhibited PBEC autophagy, while PM elicited no significant response. Further, PsA exposure increased myofibroblast differentiation and collagen formation. IL-33 blockade in these co-cultures recovered Beclin-1, cellular autophagy and attenuated myofibroblast activation in a Beclin-1 dependent manner. CONCLUSION: CLAD is associated with increased airway IL-33 expression and reduced basal autophagy. PsA induces a fibrogenic response by inhibiting airway epithelial autophagy in an IL-33 dependent manner.


Subject(s)
Arthritis, Psoriatic , Pseudomonas , Humans , Beclin-1/metabolism , Interleukin-33/metabolism , Arthritis, Psoriatic/metabolism , Lung/metabolism , Autophagy/physiology
17.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982526

ABSTRACT

Genome damage has been related to the induction of autoimmune processes, chronic inflammation, and apoptosis. Recent studies suggest that some rheumatological diseases are associated with overall genomic instability in the T cell compartment. However, no data regarding leucocyte abnormalities in synovial fluid (SF) and their relationship with inflammation are available. The aim of this study was to investigate cellular phenotypes in SF collected from patients with different inflammatory arthropathies, including rhematoid arthritis (RA), psoriatic arthritis (PsA), crystal-induced arthritis (CIA), and non-inflammatory arthropathies, such as osteoarthritis (OA). We found high percentage of micronuclei in SF from CIA compared to the other groups and a high frequency of pyknotic cell in RA and CIA patients. A correlation between pyknosis and immature polymorphonuclear cells with local inflammatory indices was observed. The study of the apoptosis process revealed an increased BAX expression in CIA and RA compared to OA and PsA, while Bcl-2 was higher in CIA. Caspase-3 activity was increased in SF from RA patients and correlates with inflammatory and anti-inflammatory cytokines. In conclusion, our results showed that inflammatory SF is associated with genomic instability and abnormal cell subsets.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Osteoarthritis , Humans , Synovial Fluid/metabolism , Arthritis, Rheumatoid/metabolism , Arthritis, Psoriatic/metabolism , Osteoarthritis/metabolism , Inflammation/metabolism
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-982042

ABSTRACT

Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.


Subject(s)
Humans , Interleukins , Arthritis, Rheumatoid , Osteoarthritis/pathology , Arthritis, Psoriatic/metabolism , Cytokines
19.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361639

ABSTRACT

Chronic plaque psoriasis is an immune-mediated skin disease with a chronic relapsing course, affecting up to ~2-3% of the general adult population worldwide. The interleukin (IL)-23/Th17 axis plays a key role in the pathogenesis of this skin disease and may represent a critical target for new targeted pharmacotherapies. Cutaneous lesions tend to recur in the same body areas, likely because of the reactivation of tissue-resident memory T cells. The spillover of different pro-inflammatory cytokines into systemic circulation can promote the onset of different comorbidities, including psoriatic arthritis. New targeted pharmacotherapies may lead to almost complete skin clearance and significant improvements in the patient's quality of life. Accumulating evidence supports the notion that early intervention with targeted pharmacotherapies could beneficially affect the clinical course of psoriatic disease at three different levels: (1) influencing the immune cells infiltrating the skin and gene expression, (2) the prevention of psoriasis-related comorbidities, especially psoriatic arthritis, and (3) the improvement of the patient's quality of life and reduction of cumulative life course impairment. The main aim of this narrative review is to summarize the effects that new targeted pharmacotherapies for psoriasis may have on the immune scar, both at the molecular and cellular level, on psoriatic arthritis and on the patient's quality of life.


Subject(s)
Arthritis, Psoriatic , Psoriasis , Adult , Humans , Arthritis, Psoriatic/metabolism , Quality of Life , Psoriasis/metabolism , Interleukin-23 , Th17 Cells
20.
Int Immunopharmacol ; 112: 109267, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179420

ABSTRACT

BACKGROUND: The development of novel treatment strategies of immune-mediated inflammatory arthritis (IMIA) is still a clinical unmet need. The mitogen-activated protein kinase (MAPK) pathway is activated by environmental stressors, growth factors and inflammatory cytokines. However, the inhibition of central MAPK proteins has so far had undesirable side effects. The MAPK-activated protein kinase 2 (MK2) is a downstream mediator in the MAPK signaling pathway. OBJECTIVES: The objective of this study was to explore the effects of a small molecule inhibiting MK2 on synovial fluid mononuclear cells from patients with IMIA. METHODS: Synovial fluid mononuclear cells (SFMCs) were obtained from a study population consisting of patients with active rheumatoid arthritis (RA), peripheral spondyloarthritis (SpA) or psoriatic arthritis (PsA) with at least one swollen joint (for obtaining synovial fluid) (n = 11). SFMCs were cultured for 48 h with and without the MK2 inhibitor CC0786512 at 1000 nM, 333 nM and 111 nMand cell free supernatants were harvested and frozen before they were analyzed by the Olink proseek multiplex interferon panel. RESULTS: In SFMCs cultured for 48 h, the MK2 inhibitor decreased the production of chemokine (C-X-C motif) ligand 9 (CXCL9) (P < 0.001), CXCL10 (P < 0.01), hepatocyte growth factor (HGF) (P < 0.01), CXCL11 (P < 0.01), tumor necrosisfactor-like weak inducer of apoptosis (TWEAK) (P < 0.05), and interleukin 12B (IL-12B) (P < 0.05) and increased the production of CXCL5 (P < 0.0001), CXCL1 (P < 0.0001), CXCL6 (P < 0.001), transforming growthfactoralpha (TGFα) (P = 0.01), monocyte-chemotactic protein 3 (MCP-3) (P < 0.01), latency-associated peptide (LAP) TGFß (P < 0.05) dose-dependently. CONCLUSIONS: This study reveals the downstream effects of MK2 inhibition on the secretory profile of SFMCs. Specifically, C-X-C motif chemokine receptors 3 (CXCR3) chemokines were decreased and CXCR2 chemokines were increased. This shift in the chemokine milieu may be one of the mechanisms behind the anti-inflammatory effects of MK2 inhibitors.


Subject(s)
Arthritis, Psoriatic , Synovial Fluid , Humans , Synovial Fluid/chemistry , Interleukin-12 Subunit p40/metabolism , Hepatocyte Growth Factor/metabolism , Transforming Growth Factor alpha/analysis , Transforming Growth Factor alpha/metabolism , Mitogen-Activated Protein Kinases/metabolism , Ligands , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Chemokines/metabolism , Receptors, Interleukin-8B/metabolism , Interferons/metabolism , Transforming Growth Factor beta/metabolism , Anti-Inflammatory Agents/metabolism , Synovial Membrane/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...