Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.067
Filter
1.
Clin Oral Investig ; 28(6): 356, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834721

ABSTRACT

OBJECTIVES: This ex-vivo study aimed to assess the influence of tube current (mA) and metal artifact reduction (MAR) on the diagnosis of early external cervical resorption (EECR) in cone-beam computed tomography (CBCT) in the presence of an adjacent dental implant. MATERIALS AND METHODS: Twenty-three single-rooted teeth were sectioned longitudinally and EECR was induced using a spherical drill and 5% nitric acid in 10 teeth. Each tooth was positioned in the socket of the lower right canine of a dry human mandible and CBCT scans were acquired using 90 kVp, voxel of 0.085 mm, field of view of 5 x 5 cm, and varying tube current (4, 8 or 12 mA), MAR (enabled or disabled) and implant conditions (with a zirconia implant in the socket of the lower right first premolar or without). Five oral radiologists evaluated the presence of EECR in a 5-point scale and the diagnostic values (area under the receiver operating characteristic curve - AUC, sensitivity, and specificity) were compared using multi-way Analysis of Variance (α = 0.05). Kappa test assessed intra-/inter-evaluator agreement. RESULTS: The tube current only influenced the AUC values in the presence of the implant and when MAR disabled; in this case, 8 mA showed lower values (p<0.007). MAR did not influence the diagnostic values (p>0.05). In general, the presence of an implant reduced the AUC values (p<0.0001); sensitivity values with 8 mA and MAR disabled, and specificity values with 4 mA and MAR enabled and 8 mA regardless MAR were also decreased (p<0.0001). CONCLUSIONS: Variations in tube current and MAR were unable to improve EECR detection, which was impaired by the presence of an adjacent implant. CLINICAL RELEVANCE: Increasing tube current or activating MAR tool does not improve EECR diagnosis, which is hampered by the artifacts generated by dental implants.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Humans , Cone-Beam Computed Tomography/methods , In Vitro Techniques , Dental Implants , Sensitivity and Specificity , Metals , Mandible/diagnostic imaging , Root Resorption/diagnostic imaging , Root Resorption/etiology
3.
J Nucl Med Technol ; 52(2): 181-182, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839115

ABSTRACT

A 63-y-old woman with a history of breast cancer presented with concerns of osseous metastasis. Initial whole-body planar bone scintigraphy revealed a focus of concern overlying the sternum. SPECT/CT images revealed the anomaly-localized activity in the needleless hub attached to the chemotherapy port. If not for the precision of SPECT/CT, such a rare artifact could have led to a false-positive diagnosis, particularly impactful in breast cancer patients. This case emphasizes the critical role of SPECT/CT in accurate diagnoses.


Subject(s)
Breast Neoplasms , Single Photon Emission Computed Tomography Computed Tomography , Humans , Female , Middle Aged , Single Photon Emission Computed Tomography Computed Tomography/methods , Breast Neoplasms/diagnostic imaging , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Artifacts
4.
J Biomed Opt ; 29(6): 066002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745984

ABSTRACT

Significance: Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim: We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach: We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results: The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions: The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Artifacts , Reproducibility of Results , Signal-To-Noise Ratio
5.
Sci Rep ; 14(1): 10998, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745068

ABSTRACT

Using ferric chloride (FeCl3) to induce experimental superior sagittal sinus (SSS) thrombosis might interfere with magnetic resonance imaging (MRI)-assisted visualization and evaluation of the thrombus, the brain parenchyma, and the quality of the occlusion. The aim of this study was to investigate whether aluminum chloride (AlCl3)-induced thrombosis of the SSS has comparable properties to those of FeCl3 without causing artifacts in MRI. SSS thrombosis was induced in 14 male Wistar rats by exposure of the SSS and subsequent topical application of a filter paper strip soaked in AlCl3 (n = 7) or FeCl3 (n = 7) over a period of 15 min. The animals with AlCl3-induced SSS thrombosis showed a constant and complete occlusion with in histological analysis large thrombi. Blood flow measurements indicated a significant reduction on the first and seventh postoperative day compared to preoperative measurements. MRI enabled visualization and subsequent evaluation of the thrombus and the surrounding parenchyma. In comparison, FeCl3-induced SSS thrombosis could not be evaluated by MRI due to artifacts caused by the paramagnetic properties and increased susceptibility of FeCl3. The occluded sinus and the surrounding area appeared hypointense. The quality of SSS occlusion by AlCl3 was comparable to that of FeCl3. AlCl3 therefore represents a significant alternative substance in experimental SSS thrombosis ideally suited for studies using MRI.


Subject(s)
Aluminum Chloride , Artifacts , Chlorides , Disease Models, Animal , Ferric Compounds , Magnetic Resonance Imaging , Rats, Wistar , Animals , Magnetic Resonance Imaging/methods , Male , Rats , Chlorides/pharmacology , Chlorides/administration & dosage , Sagittal Sinus Thrombosis/diagnostic imaging , Sagittal Sinus Thrombosis/chemically induced , Aluminum Compounds , Superior Sagittal Sinus/diagnostic imaging , Superior Sagittal Sinus/drug effects
6.
BMC Med Imaging ; 24(1): 113, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760778

ABSTRACT

BACKGROUND: Recent Convolutional Neural Networks (CNNs) perform low-error reconstruction in fast Magnetic Resonance Imaging (MRI). Most of them convolve the image with kernels and successfully explore the local information. Nonetheless, the non-local image information, which is embedded among image patches relatively far from each other, may be lost due to the limitation of the receptive field of the convolution kernel. We aim to incorporate a graph to represent non-local information and improve the reconstructed images by using the Graph Convolutional Enhanced Self-Similarity (GCESS) network. METHODS: First, the image is reconstructed into the graph to extract the non-local self-similarity in the image. Second, GCESS uses spatial convolution and graph convolution to process the information in the image, so that local and non-local information can be effectively utilized. The network strengthens the non-local similarity between similar image patches while reconstructing images, making the reconstruction of structure more reliable. RESULTS: Experimental results on in vivo knee and brain data demonstrate that the proposed method achieves better artifact suppression and detail preservation than state-of-the-art methods, both visually and quantitatively. Under 1D Cartesian sampling with 4 × acceleration (AF = 4), the PSNR of knee data reached 34.19 dB, 1.05 dB higher than that of the compared methods; the SSIM achieved 0.8994, 2% higher than the compared methods. Similar results were obtained for the reconstructed images under other sampling templates as demonstrated in our experiment. CONCLUSIONS: The proposed method successfully constructs a hybrid graph convolution and spatial convolution network to reconstruct images. This method, through its training process, amplifies the non-local self-similarities, significantly benefiting the structural integrity of the reconstructed images. Experiments demonstrate that the proposed method outperforms the state-of-the-art reconstruction method in suppressing artifacts, as well as in preserving image details.


Subject(s)
Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Humans , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Knee/diagnostic imaging , Algorithms , Artifacts
7.
Clin Oral Investig ; 28(6): 315, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748313

ABSTRACT

OBJECTIVES: To assess whether filter and contrast adjustments can improve the accuracy of CBCT in measuring the buccal bone thickness (BBT) adjacent to dental implants by reducing blooming artifacts. MATERIALS AND METHODS: Homogeneous bone blocks with peri-implant BBT of 0.3 mm, 0.5 mm, and 1 mm were scanned using the Orthophos SL system. Three dentists measured the BBT in 234 CBCT scans under different settings of contrast adjustments and 'Sharpen' filter activation. Additionally, implant diameter measurements were taken to assess blooming artifact expression. The differences between tomographic and actual measurements of BBT and implant diameter [(CBCT - actual) * 100 / actual] were subjected to Mixed ANOVA (α = 0.05). RESULTS: The group with the thinnest BBT (0.3 mm) had the greatest difference between tomographic and actual measurements (79.9% ± 29.0%). Conversely, the 0.5 mm (36.1% ± 38.4%) and 1 mm (29.4% ± 12.3%) groups exhibited lower differences (p < 0.05). 'Sharpen' filter activation reduced blooming expression since it resulted in a lower difference for implant diameter (p < 0.05), but it did not influence BBT measurements (p = 0.673). Contrast settings had no impact on BBT (p = 0.054) or implant diameter measurements (p = 0.079). CONCLUSION: Although filter activation reduced blooming artifacts, neither filter nor contrast adjustments improved the accuracy of CBCT in measuring peri-implant BBT; actual BBT influenced this task. CLINICAL RELEVANCE: When assessing the peri-implant buccal bone plate in the CBCT system studied, dental surgeons may find it beneficial to adjust contrast and apply filters according to their preferences, since such adjustments were found to have no adverse effects on the diagnostic accuracy of this task. The use of the 'Sharpen' filter may lead to improved representation of implant dimensions.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Dental Implants , Humans , Cone-Beam Computed Tomography/methods
8.
J Thorac Oncol ; 19(5): 677-697, 2024 May.
Article in English | MEDLINE | ID: mdl-38719424

ABSTRACT

In this PRO-CON debate, you will read very different perspectives about a simple question regarding an observation under the microscope: What is the significance of tumor cells in the air spaces of the lung parenchyma beyond the tumor edge of a resected lung cancer? An important underlying question is whether this entire PRO-CON debate is a mere academic exercise or whether spread through air spaces (STAS), as currently defined, describes a clinically useful phenomenon. The journey of STAS began with a complete paradigm shift to reverse the thinking that all air space tumor cells beyond the edge of lung cancers are an artifact. This led to a new concept where STAS could be separated from artifacts with a definition that has proven to be clinically useful. As with any major change in thinking, it is understandable that there would be some disagreement with this paradigm shift. Nevertheless, after a decade since it was described, many pathologists and clinicians around the world have found STAS to provide important information about the behavior of lung cancer. Numerous PRO-STAS articles supporting the usefulness of STAS have been published with clinical data on many thousands of patients from numerous institutions all over the world. In contrast, for the CON-STAS articles, widespread international representation and data are limited. It is now difficult to ignore the numerous reports and is reasonable to consider how to use the presence of STAS in clinical decisions. Hopefully, this PRO-CON debate will further stimulate clinical and scientific investigations aimed at a better understanding of STAS.


Subject(s)
Artifacts , Lung Neoplasms , Humans , Lung Neoplasms/pathology
9.
Physiol Meas ; 45(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38697210

ABSTRACT

Objective.Electrical impedance tomography (EIT) produces clinical useful visualization of the distribution of ventilation inside the lungs. The accuracy of EIT-derived parameters can be compromised by the cardiovascular signal. Removal of these artefacts is challenging due to spectral overlapping of the ventilatory and cardiovascular signal components and their time-varying frequencies. We designed and evaluated advanced filtering techniques and hypothesized that these would outperform traditional low-pass filters.Approach.Three filter techniques were developed and compared against traditional low-pass filtering: multiple digital notch filtering (MDN), empirical mode decomposition (EMD) and the maximal overlap discrete wavelet transform (MODWT). The performance of the filtering techniques was evaluated (1) in the time domain (2) in the frequency domain (3) by visual inspection. We evaluated the performance using simulated contaminated EIT data and data from 15 adult and neonatal intensive care unit patients.Main result.Each filter technique exhibited varying degrees of effectiveness and limitations. Quality measures in the time domain showed the best performance for MDN filtering. The signal to noise ratio was best for DLP, but at the cost of a high relative and removal error. MDN outbalanced the performance resulting in a good SNR with a low relative and removal error. MDN, EMD and MODWT performed similar in the frequency domain and were successful in removing the high frequency components of the data.Significance.Advanced filtering techniques have benefits compared to traditional filters but are not always better. MDN filtering outperformed EMD and MODWT regarding quality measures in the time domain. This study emphasizes the need for careful consideration when choosing a filtering approach, depending on the dataset and the clinical/research question.


Subject(s)
Artifacts , Electric Impedance , Signal Processing, Computer-Assisted , Tomography , Humans , Tomography/methods , Signal-To-Noise Ratio , Adult , Wavelet Analysis , Cardiovascular System , Infant, Newborn
11.
J Med Invest ; 71(1.2): 154-157, 2024.
Article in English | MEDLINE | ID: mdl-38735712

ABSTRACT

BACKGROUND: Adjustable shunt valves that have been developed for managing hydrocephalus rely on intrinsically magnetic components ; thus, artifacts with these valves on magnetic resonance imaging (MRI) are inevitable. No studies on valve-induced artifacts in lumboperitoneal shunt (LPS) surgery have been published. Therefore, this study aimed to evaluate valve-induced artifacts in LPS. METHODS: We retrospectively reviewed all MRIs obtained between January 2023 and June 2023 in patients with an implanted Codman CERTAS Plus adjustable shunt valve (Integra Life Sciences, Princeton, New Jersey, USA). The valve was placed <1 cm subcutaneously on the paravertebral spinal muscle of the back, with its long axis perpendicular to the body axis. The scans were performed using a Toshiba Medical Systems 1.5 Tesla scanner. The in-plane artifact sizes were assessed as the maximum distance of the artifact from the expected region of the back. RESULTS: All spinal structures or spinal cords can be recognized, even with valve-induced artifacts. The median maximum valve-induced artifact distance on T1-weighted axial imaging was 25.63 mm (mean, 25.98 mm ; range, 22.24-30.94 mm). The median maximum valve-induced artifact distance on T2-weighted axial imaging was 25.56 mm (mean, 26.27 mm ; range, 21.83-29.53 mm). CONCLUSION: LPS surgery with adjustable valve implantation on paravertebral muscles did not cause valve-induced artifacts in the spine and spinal cord. We considered that LPS could simplify the postoperative care of these patients. J. Med. Invest. 71 : 154-157, February, 2024.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Aged , Adult , Cerebrospinal Fluid Shunts/methods , Aged, 80 and over , Hydrocephalus/surgery , Hydrocephalus/diagnostic imaging , Paraspinal Muscles/diagnostic imaging
12.
ACS Appl Mater Interfaces ; 16(21): 27952-27960, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808703

ABSTRACT

Capable of directly capturing various physiological signals from human skin, skin-interfaced bioelectronics has emerged as a promising option for human health monitoring. However, the accuracy and reliability of the measured signals can be greatly affected by body movements or skin deformations (e.g., stretching, wrinkling, and compression). This study presents an ultraconformal, motion artifact-free, and multifunctional skin bioelectronic sensing platform fabricated by a simple and user-friendly laser patterning approach for sensing high-quality human physiological data. The highly conductive membrane based on the room-temperature coalesced Ag/Cu@Cu core-shell nanoparticles in a mixed solution of polymers can partially dissolve and locally deform in the presence of water to form conformal contact with the skin. The resulting sensors to capture improved electrophysiological signals upon various skin deformations and other biophysical signals provide an effective means to monitor health conditions and create human-machine interfaces. The highly conductive and stretchable membrane can also be used as interconnects to connect commercial off-the-shelf chips to allow extended functionalities, and the proof-of-concept demonstration is highlighted in an integrated pulse oximeter. The easy-to-remove feature of the resulting device with water further allows the device to be applied on delicate skin, such as the infant and elderly.


Subject(s)
Wearable Electronic Devices , Humans , Skin/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Silver/chemistry , Copper/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Artifacts , Metal Nanoparticles/chemistry , Motion , Electric Conductivity
13.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793840

ABSTRACT

We propose the use of a specially designed polyurethane foam with a plateau region in its mechanical characteristics-where stress remains nearly constant during deformation-between the electromyography (EMG) electrode and clothing to suppress motion artifacts in EMG measurement. Wearable EMG devices are receiving attention for monitoring muscle weakening due to aging. However, daily EMG measurement has been challenging due to motion artifacts caused by changes in the contact pressure between the bioelectrode and the skin. Therefore, this study aims to measure EMG signals in daily movement environments by controlling the contact pressure using polyurethane foam between the bioelectrode on the clothing and the skin. Through mechanical calculations and finite element method simulations of the polyurethane foam's effect, we clarified that the characteristics of the polyurethane foam significantly influence contact pressure control and that the contact pressure is adjustable through the polyurethane foam thickness. The optimization of the design successfully controlled the contact pressure between the bioelectrode and skin from 1.0 kPa to 2.0 kPa, effectively suppressing the motion artifact in EMG measurement.


Subject(s)
Artifacts , Electromyography , Polyurethanes , Wearable Electronic Devices , Polyurethanes/chemistry , Electromyography/methods , Electromyography/instrumentation , Humans , Electrodes , Motion
14.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794026

ABSTRACT

Participant movement is a major source of artifacts in functional near-infrared spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear Hammerstein-Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement recordings through IMU sensors mounted on the participant's head (head-IMU) and the fNIRS probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a hand tapping task with different levels of concurrent head movement. Additionally, the tapping task was performed without head movements to estimate the ground-truth brain activation. We compared the performance of our novel approach with the probe-IMU and head-IMU to eight established methods (PCA, tPCA, spline, spline Savitzky-Golay, wavelet, CBSI, RLOESS, and WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear Hammerstein-Wiener method achieved the best SNR increase (p < 0.001) among all methods. Visual inspection revealed that our approach mitigated MA contaminations that other techniques could not remove effectively. MA correction quality was comparable with head- and probe-IMUs.


Subject(s)
Artifacts , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Adult , Female , Movement/physiology , Motion , Oxyhemoglobins/analysis , Brain/physiology , Young Adult , Hemoglobins/analysis , Algorithms , Signal Processing, Computer-Assisted , Hemodynamics/physiology
15.
Sci Rep ; 14(1): 11539, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773167

ABSTRACT

Blooming artifacts caused by calcifications appearing on computed tomography (CT) images lead to an underestimation of the coronary artery lumen size, and higher X-ray energy levels are suggested to reduce the blooming artifacts with subjective visual assessment. This study aimed to evaluate the effect of higher X-ray energy levels on the quantitative measurement of adjacent pixels affected by calcification using CT images. In this two-part study, CT images were acquired from dual-energy CT scanners by changing the X-ray energy levels such as kilovoltage peak (kVp) and kilo-electron volts (keV). Adjacent pixels affected by calcification were measured using the brightened length, excluding the actual calcified length, as determined by the full width at third maximum. In a separate clinical study, the adjacent affected pixels associated with 23 calcifications across 10 patients were measured using the same method as that used in the phantom study. Phantom and clinical studies showed that the change in kVp (field of view [FOV] 300 mm: p = 0.167, 0.494, and 0.861 for vendors 1, 2, and 3, respectively) and keV levels (p = 0.178 for vendor 2) failed to reduce the adjacent pixels affected by calcification, respectively. Moreover, the change in keV levels showed different aspects of adjacent pixels affected by calcification in the phantom study (FOV 300 mm: no significant difference [p = 0.191], increase [p < 0.001], and decrease [p < 0.001] for vendors 1, 2, and 3, respectively). Quantitative measurements revealed no significant relationship between higher X-ray energy levels and the adjacent pixels affected by calcification.


Subject(s)
Artifacts , Calcinosis , Phantoms, Imaging , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Calcinosis/diagnostic imaging , Male , Female , Middle Aged , Aged , Coronary Vessels/diagnostic imaging , X-Rays
16.
Phys Med Biol ; 69(12)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776948

ABSTRACT

Objective.Single-photon emission computed tomography (SPECT) with pinhole collimators can provide high-resolution imaging, but is often limited by low sensitivity. Acquiring projections simultaneously through multiple pinholes affords both high resolution and high sensitivity. However, the overlap of projections from different pinholes on detectors, known as multiplexing, has been shown to cause artefacts which degrade reconstructed images.Approach.Multiplexed projection sets were considered here using an analytic simulation model of AdaptiSPECT-C-a brain-dedicated multi-pinhole SPECT system. AdaptiSPECT-C has fully adaptable aperture shutters, so can acquire projections with a combination of multiplexed and non-multiplexed frames using temporal shuttering. Two strategies for reducing multiplex artefacts were considered: an algorithm to de-multiplex projections, and an alternating reconstruction strategy for projections acquired with a combination of multiplexed and non-multiplexed frames. Geometric and anthropomorphic digital phantoms were used to assess a number of metrics.Main results.Both de-multiplexing strategies showed a significant reduction in image artefacts and improved fidelity, image uniformity, contrast recovery and activity recovery (AR). In all cases, the two de-multiplexing strategies resulted in superior metrics to those from images acquired with only mux-free frames. The de-multiplexing algorithm provided reduced image noise and superior uniformity, whereas the alternating strategy improved contrast and AR.Significance.The use of these de-multiplexing algorithms means that multi-pinhole SPECT systems can acquire projections with more multiplexing without degradation of images.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon , Tomography, Emission-Computed, Single-Photon/methods , Tomography, Emission-Computed, Single-Photon/instrumentation , Image Processing, Computer-Assisted/methods , Time Factors , Humans , Algorithms
17.
Stud Health Technol Inform ; 314: 155-159, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38785023

ABSTRACT

Among its main benefits, telemonitoring enables personalized management of chronic diseases by means of biomarkers extracted from signals. In these applications, a thorough quality assessment is required to ensure the reliability of the monitored parameters. Motion artifacts are a common problem in recordings with wearable devices. In this work, we propose a fully automated and personalized method to detect motion artifacts in multimodal recordings devoted to the monitoring of the Cardiac Time Intervals (CTIs). The detection of motion artifacts was carried out by using template matching with a personalized template. The method yielded a balanced accuracy of 86%. Moreover, it proved effective to decrease the variability of the estimated CTIs by at least 17%. Our preliminary results show that personalized detection of motion artifacts improves the robustness of the assessment CTIs and opens to the use in wearable systems.


Subject(s)
Artifacts , Telemedicine , Humans , Wearable Electronic Devices , Reproducibility of Results , Monitoring, Physiologic/methods , Electrocardiography , Signal Processing, Computer-Assisted
18.
J Neurosci Methods ; 407: 110162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740142

ABSTRACT

BACKGROUND: Progress in advancing sleep research employing polysomnography (PSG) has been negatively impacted by the limited availability of widely available, open-source sleep-specific analysis tools. NEW METHOD: Here, we introduce Counting Sheep PSG, an EEGLAB-compatible software for signal processing, visualization, event marking and manual sleep stage scoring of PSG data for MATLAB. RESULTS: Key features include: (1) signal processing tools including bad channel interpolation, down-sampling, re-referencing, filtering, independent component analysis, artifact subspace reconstruction, and power spectral analysis, (2) customizable display of polysomnographic data and hypnogram, (3) event marking mode including manual sleep stage scoring, (4) automatic event detections including movement artifact, sleep spindles, slow waves and eye movements, and (5) export of main descriptive sleep architecture statistics, event statistics and publication-ready hypnogram. COMPARISON WITH EXISTING METHODS: Counting Sheep PSG was built on the foundation created by sleepSMG (https://sleepsmg.sourceforge.net/). The scope and functionalities of the current software have made significant advancements in terms of EEGLAB integration/compatibility, preprocessing, artifact correction, event detection, functionality and ease of use. By comparison, commercial software can be costly and utilize proprietary data formats and algorithms, thereby restricting the ability to distribute and share data and analysis results. CONCLUSIONS: The field of sleep research remains shackled by an industry that resists standardization, prevents interoperability, builds-in planned obsolescence, maintains proprietary black-box data formats and analysis approaches. This presents a major challenge for the field of sleep research. The need for free, open-source software that can read open-format data is essential for scientific advancement to be made in the field.


Subject(s)
Polysomnography , Signal Processing, Computer-Assisted , Sleep Stages , Software , Polysomnography/methods , Humans , Sleep Stages/physiology , Electroencephalography/methods , Artifacts
19.
Neuroimage ; 294: 120646, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38750907

ABSTRACT

Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.


Subject(s)
Brain , Deep Learning , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Male , Female , Middle Aged , Young Adult , Aging/physiology , Aged , Head Movements/physiology , Artifacts , Image Processing, Computer-Assisted/methods , Adolescent
20.
Methods Mol Biol ; 2775: 141-153, 2024.
Article in English | MEDLINE | ID: mdl-38758316

ABSTRACT

This chapter describes methodological details for preparing specimens of Cryptococcus neoformans (although it can be applied to any species of the genus) and their subsequent analysis by scanning and transmission electron microscopy. Adaptations to conventional protocols for better preservation of the sample, as well as to avoid artifacts, are presented. The protocols may be used to examine both the surface ultrastructure and the interior of this pathogenic fungus in detail.


Subject(s)
Artifacts , Cryptococcus neoformans , Cryptococcus neoformans/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Electron, Scanning/methods , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...