Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35861391

ABSTRACT

Deceptive pollination often involves volatile organic compound emissions that mislead insects into performing nonrewarding pollination. Among deceptively pollinated plants, Arum maculatum is particularly well-known for its potent dung-like volatile organic compound emissions and specialized floral chamber, which traps pollinators-mainly Psychoda phalaenoides and Psychoda grisescens-overnight. However, little is known about the genes underlying the production of many Arum maculatum volatile organic compounds, and their influence on variation in pollinator attraction rates. Therefore, we performed de novo transcriptome sequencing of Arum maculatum appendix and male floret tissue collected during anthesis and postanthesis, from 10 natural populations across Europe. These RNA-seq data were paired with gas chromatography-mass spectrometry analyses of floral scent composition and pollinator data collected from the same inflorescences. Differential expression analyses revealed candidate transcripts in appendix tissue linked to malodourous volatile organic compounds including indole, p-cresol, and 2-heptanone. In addition, we found that terpene synthase expression in male floret tissue during anthesis significantly covaried with sex- and species-specific attraction of Psychoda phalaenoides and Psychoda grisescens. Taken together, our results provide the first insights into molecular mechanisms underlying pollinator attraction patterns in Arum maculatum and highlight floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes for further study.


Subject(s)
Araceae , Arum , Volatile Organic Compounds , Alkyl and Aryl Transferases , Araceae/chemistry , Araceae/metabolism , Arum/metabolism , Flowers/genetics , Flowers/metabolism , Pollination/genetics , Transcriptome , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
2.
Sci Rep ; 5: 8753, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25736477

ABSTRACT

Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-D-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants.


Subject(s)
Arum/genetics , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Arum/metabolism , Biosynthetic Pathways/genetics , Energy Metabolism/genetics , Flowers/chemistry , Flowers/metabolism , Gene Ontology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Odorants/analysis , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature , Terpenes/metabolism , Transferases/genetics , Transferases/metabolism
3.
Plant Physiol Biochem ; 63: 140-50, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23262182

ABSTRACT

The low photosynthetic activity of fleshy green fruits is currently attributed to their special anatomy rather than to a down-regulation of photosystem II (PSII). However, it is unclear whether the organization of PSII, which is highly conserved in leaves, is also shared by non-foliar structures, such as fleshy fruits. To obtain new information on this aspect, the photosynthetic activity and the organization of PSII were investigated in the berry of Arum italicum Miller during maturation (ivory to green) and early ripening (green to yellow). The berry developed an "internal CO(2) recycling" photosynthesis; gross photosynthesis at the green stage was 25% of the leaf lamina. SDS-PAGE, BN-PAGE and 77 K spectrofluorimetry showed that the thylakoid membrane accumulated a very high amount of free LHCII trimers and only few PSII and PSI complexes. The pattern of PSII forms was similar to that of the lamina (monomers, dimers, LHCII-PSII supercomplexes), but increase in CP43-less PSII cores and low F695/F680 fluorescence ratio at room temperature indicated that PSII was less stable than in the leaf lamina. Beside effective PSII photoprotection, we propose that LHCII serves as a temporary storage of chlorophylls to provide a visual signal that fruit is not mature for seed dispersal. We conclude that the low photosynthetic activity of A. italicum berry depends on the scantiness of reaction centres and the reduced functionality of PSII.


Subject(s)
Arum/metabolism , Fruit/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Electrophoresis, Polyacrylamide Gel
4.
Biochem J ; 445(2): 237-46, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22512685

ABSTRACT

Symplocarpus renifolius and Arum maculatum are known to produce significant heat during the course of their floral development, but they use different regulatory mechanisms, i.e. homoeothermic compared with transient thermogenesis. To further clarify the molecular basis of species-specific thermogenesis in plants, in the present study we have analysed the native structures and expression patterns of the mitochondrial respiratory components in S. renifolius and A. maculatum. Our comparative analysis using Blue native PAGE combined with nano LC (liquid chromatography)-MS/MS (tandem MS) has revealed that the constituents of the respiratory complexes in both plants were basically similar, but that several mitochondrial components appeared to be differently expressed in their thermogenic organs. Namely, complex II in S. renifolius was detected as a 340 kDa product, suggesting an oligomeric or supramolecular structure in vivo. Moreover, the expression of an external NAD(P)H dehydrogenase was found to be higher in A. maculatum than in S. renifolius, whereas an internal NAD(P)H dehydrogenase was expressed at a similar level in both species. Alternative oxidase was detected as smear-like signals that were elongated on the first dimension with a peak at around 200 kDa in both species. The significance and implication of these data are discussed in terms of thermoregulation in plants.


Subject(s)
Araceae/metabolism , Arum/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Thermogenesis , Amino Acid Sequence , Araceae/genetics , Arum/genetics , Blotting, Western , Electron Transport , Electrophoresis, Gel, Two-Dimensional , Flowers , Mitochondria/genetics , Mitochondrial Proteins/genetics , Molecular Sequence Data , NADPH Dehydrogenase/genetics , NADPH Dehydrogenase/metabolism , Oxidoreductases/genetics , Phylogeny , Plant Proteins/genetics , Sequence Homology, Amino Acid , Tandem Mass Spectrometry
5.
Plant Physiol Biochem ; 49(12): 1392-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22078376

ABSTRACT

The presence of pale-green flecks on leaves (speckling) is a frequent character among herbaceous species from shady places and is usually due to local loosening of palisade tissue (air space type of variegation). In the winter-green Arum italicum L. (Araceae), dark-green areas of variegated leaf blades are ca. 400 µm thick with a chlorophyll content of 1080 mg m⁻² and a palisade parenchyma consisting of a double layer of oblong cells. Pale-green areas are 25% thinner, have 26% less chlorophyll and contain a single, loose layer of short palisade cells. Full-green leaves generally present only one compact layer of cylindrical palisade cells and the same pigment content as dark-green sectors, but the leaf blade is 13% thinner. A spongy parenchyma with extensive air space is present in all leaf types. Green cells of all tissues have normal chloroplasts. Assays of photosynthetic activities by chlorophyll fluorescence imaging and O2 exchange measurements showed that variegated pale-green and dark-green sectors as well as full-green leaves have comparable photosynthetic activities on a leaf area basis at saturating illumination. However, full-green leaves require a higher saturating light with respect to variegated sectors, and pale-green sectors support relatively higher photosynthesis rates on a chlorophyll basis. We conclude that i) variegation in this species depends on number and organization of palisade cell layers and can be defined as a "variable palisade" type, and ii) the variegated habit has no limiting effects on the photosynthetic energy budget of A. italicum, consistent with the presence of variegated plants side by side to full-green ones in natural populations.


Subject(s)
Arum/anatomy & histology , Arum/metabolism , Chlorophyll/metabolism , Photosynthesis/physiology , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Color , Fluorescence , Light , Oxygen/metabolism
6.
Plant Physiol Biochem ; 48(4): 265-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20144873

ABSTRACT

The protein complexes of the mitochondrial respiratory chain associate in defined ways forming supramolecular structures called respiratory supercomplexes or respirasomes. In plants, additional oxidoreductases participate in respiratory electron transport, e.g. the so-called "alternative NAD(P)H dehydrogenases" or an extra terminal oxidase called "alternative oxidase" (AOX). These additional enzymes were previously reported not to form part of respiratory supercomplexes. However, formation of respiratory supercomplexes might indirectly affect "alternative respiration" because electrons can be channeled within the supercomplexes which reduces access of the alternative enzymes towards their electron donating substrates. Here we report an investigation on the supramolecular organization of the respiratory chain in thermogenic Arum maculatum appendix mitochondria, which are known to have a highly active AOX for heat production. Investigations based on mild membrane solubilization by digitonin and protein separation by blue native PAGE revealed a very special organization of the respiratory chain in A. maculatum, which strikingly differs to the one described for the model plant Arabidopsis thaliana: (i) complex I is not present in monomeric form but exclusively forms part of a I + III(2) supercomplex, (ii) the III(2) + IV and I + III(2) + IV supercomplexes are detectable but of low abundance, (iii) complex II has fewer subunits than in A. thaliana, and (iv) complex IV is mainly present as a monomer in a larger form termed "complex IVa". Since thermogenic tissue of A. maculatum at the same time has high AOX and I + III(2) supercomplex abundance and activity, negative regulation of the alternative oxidase by supercomplex formation seems not to occur. Functional implications are discussed.


Subject(s)
Arum/chemistry , Mitochondria/chemistry , Multienzyme Complexes/chemistry , Oxidative Phosphorylation , Oxidoreductases/metabolism , Plant Proteins/chemistry , Arum/metabolism , Electron Transport , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Mitochondria/metabolism , Mitochondrial Proteins , Multienzyme Complexes/metabolism , Plant Proteins/metabolism
7.
Planta ; 230(5): 1019-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19705147

ABSTRACT

The growth of plants under stable light quality induces long-term acclimation responses of the photosynthetic apparatus. Light can even cause variations depending on the tissue location, as in Arum italicum leaf, where chloroplasts are developed in the lamina and in the entire thickness of the petiole. We addressed the question whether differences in plastids can be characterised in terms of protein-protein interactions in the thylakoid membranes. Thylakoid assembly was studied in the palisade and spongy tissue of the lamina and in the outer parenchyma and inner aerenchyma of the petiole of the mature winter leaf of Arum italicum. The chlorophyll-protein complexes were analysed by means of blue-native-PAGE and fluorescence emission spectra. The petiole chloroplasts differ from those in the lamina in thylakoid composition: (1) reaction centres are scarce, especially photosystem (PS) I in the inner aerenchyma; (2) light-harvesting complex (LHC) II is abundant, (3) the relative amount of LHCII trimers increases, but this is not accompanied by increased levels of PSII-LHCII supercomplexes. Nevertheless, the intrinsic PSII functionality is comparable in all tissues. In Arum italicum leaf, the gradient in thylakoid organisation, which occurs from the palisade tissue to the inner aerenchyma of the petiole, is typical for photosynthetic acclimation to low-light intensity with a high enrichment of far-red light. The results obtained demonstrate a high plasticity of chloroplasts even in an individual plant. The mutual interaction of thylakoid protein complexes is discussed in relation to the photosynthetic efficiency of the leaf parts and to the ecodevelopmental role of light.


Subject(s)
Arum/metabolism , Chloroplasts/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Arabidopsis Proteins/metabolism , Arum/cytology , Carbon Dioxide/metabolism , Electrophoresis, Gel, Two-Dimensional , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Organ Specificity , Photosynthesis , Pigments, Biological/metabolism , Plant Leaves/cytology , Spectrometry, Fluorescence , Thylakoids/metabolism
8.
J Plant Physiol ; 165(13): 1360-9, 2008 Sep 08.
Article in English | MEDLINE | ID: mdl-18177980

ABSTRACT

This report demonstrates that mitochondria isolated from thermogenic Arum spadices possess an ATP-sensitive potassium channel--responsible for electrical potential (DeltaPsi) collapse and mitochondrial swelling--whose characteristics are similar to those previously described in pea and wheat mitochondria. In order to study the relationship between this K(ATP)(+) channel and the uncoupled respiration, linked to thermogenesis, K(+) transport activities were compared with those of mitochondria that were isolated from pea stems, soybean suspension cell cultures and Arum tubers. The channel from Arum spadices is highly active and its major features are (i) potassium flux is performed primarily in an inward-rectifying manner; (ii) the influx of K(+) is associated with a matrix volume increase in both energized and non-energized mitochondria; and (iii) its activity depends on the redox state of electron transport chain (ETC) and oxygen availability. In particular, this paper shows that the K(ATP)(+) channel is inwardly activated in parallel with the alternative oxidase (AO). The activation is linked to an ETC-oxidized state and to high oxygen consumption. The putative role of this K(ATP)(+) channel is discussed in relation to flowering of thermogenic Arum spadices.


Subject(s)
Arum/metabolism , Mitochondria/metabolism , Potassium Channels/metabolism , Electron Transport/physiology , Flowers/physiology , Oxygen Consumption , Plant Transpiration/drug effects , Potassium Cyanide/pharmacology , Temperature
9.
J Exp Bot ; 51(346): 873-84, 2000 May.
Article in English | MEDLINE | ID: mdl-10948213

ABSTRACT

The changes in the pigment pattern and composition occurring in the Arum italicum berry during the various steps of maturation (ivory to deep-green stages) and ripening (yellow and red-orange stages) were studied and correlated to the ultrastructural modifications of plastids. Transmission electron microscopy showed that each stage was characterized by a specific plastidial type following the unusual sequence amyloplast-->chloroplast-->chromoplast. Plastidial transitions were accompanied by profound modifications in the pigmental composition, in particular, in the pattern of carotenoids and their precursors. The HPLC analysis of the carotenoids showed that, besides the two usual all-trans metabolic pathways leading to lutein through alpha-carotene and to auroxanthin through beta-carotene, an additional cis-isomeric biosynthetic pathway leading to cis-neoxanthin through cis-beta-carotene exists. During the pre-ripening stages, the three pathways were present even if with qualitative and quantitative variations. When complete ripening was reached, a block occurred at the cyclization level causing the accumulation of both all-trans (i.e. gamma-carotene and neurosporene) and cis-isomer (i.e. lycopene and zeta-carotene) carotene precursors. Because of the occurrence of unusual pigments and the presence of the three main plastidial types, the fruit of A. italicum may constitute a most instructive model for the study of carotenogenesis.


Subject(s)
Arum/cytology , Arum/metabolism , Carotenoids/biosynthesis , Fruit/cytology , Fruit/metabolism , Plastids/metabolism , Plastids/ultrastructure , Arum/growth & development , Arum/ultrastructure , Carotenoids/analysis , Carotenoids/chemistry , Fruit/growth & development , Fruit/ultrastructure , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...