Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324143

ABSTRACT

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Subject(s)
Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Parasites/enzymology , Photosynthesis , Amino Acid Sequence , Animals , Ascorbate Peroxidases/chemistry , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/isolation & purification , Hydrogen Peroxide/metabolism , Kinetics , Models, Molecular , Parasites/genetics , Phylogeny , Structural Homology, Protein , Subcellular Fractions/metabolism
2.
Prep Biochem Biotechnol ; 45(7): 684-95, 2015.
Article in English | MEDLINE | ID: mdl-25036412

ABSTRACT

Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.


Subject(s)
Antioxidants/isolation & purification , Glutathione Reductase/chemistry , Oxidative Stress , Antioxidants/chemistry , Ascorbate Peroxidases/chemistry , Ascorbate Peroxidases/isolation & purification , Buffers , Catalase/chemistry , Catalase/isolation & purification , Glutathione Reductase/isolation & purification , Hydrogen Peroxide/chemistry , Peroxidase/chemistry , Peroxidase/isolation & purification , Superoxide Dismutase/chemistry , Superoxide Dismutase/isolation & purification
3.
Gene ; 543(1): 85-92, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24704025

ABSTRACT

To evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids. Furthermore, the LmAPX sequence was sub-cloned into prokaryotic expression vector pET28a and the recombinant proteins had a high expression level in Escherichia coli. Results from a southern blot analysis indicated that three inserts of this gene existed in the tobacco genome encoding LmAPX. Compared with the control plants (wild-type and empty vector control), the transgenic plants expressing the LmAPX gene exhibited lower amount of hydrogen peroxide (H2O2) and relatively higher values of ascorbate peroxidase activity, proline content, and net photosynthetic rate (Pn) under the same salt stress. These results suggested that overexpression of the LmAPX gene could decrease ROS production caused by salt stress and protect plants from oxidative stress.


Subject(s)
Ascorbate Peroxidases/genetics , Lycium/genetics , Nicotiana/genetics , Salt Tolerance/genetics , Amino Acid Sequence , Ascorbate Peroxidases/isolation & purification , Base Sequence , Cloning, Molecular , Cytosol/enzymology , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Data , Plants, Genetically Modified
4.
Plant Physiol ; 163(4): 1766-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24158396

ABSTRACT

Nitric oxide (NO) is a small redox molecule that acts as a signal in different physiological and stress-related processes in plants. Recent evidence suggests that the biological activity of NO is also mediated by S-nitrosylation, a well-known redox-based posttranslational protein modification. Here, we show that during programmed cell death (PCD), induced by both heat shock (HS) or hydrogen peroxide (H2O2) in tobacco (Nicotiana tabacum) Bright Yellow-2 cells, an increase in S-nitrosylating agents occurred. NO increased in both experimentally induced PCDs, although with different intensities. In H2O2-treated cells, the increase in NO was lower than in cells exposed to HS. However, a simultaneous increase in S-nitrosoglutathione (GSNO), another NO source for S-nitrosylation, occurred in H2O2-treated cells, while a decrease in this metabolite was evident after HS. Consistently, different levels of activity and expression of GSNO reductase, the enzyme responsible for GSNO removal, were found in cells subjected to the two different PCD-inducing stimuli: low in H2O2-treated cells and high in the heat-shocked ones. Irrespective of the type of S-nitrosylating agent, S-nitrosylated proteins formed upon exposure to both of the PCD-inducing stimuli. Interestingly, cytosolic ascorbate peroxidase (cAPX), a key enzyme controlling H2O2 levels in plants, was found to be S-nitrosylated at the onset of both PCDs. In vivo and in vitro experiments showed that S-nitrosylation of cAPX was responsible for the rapid decrease in its activity. The possibility that S-nitrosylation induces cAPX ubiquitination and degradation and acts as part of the signaling pathway leading to PCD is discussed.


Subject(s)
Apoptosis , Ascorbate Peroxidases/metabolism , Nicotiana/cytology , Nicotiana/enzymology , Signal Transduction , Aldehyde Oxidoreductases/metabolism , Apoptosis/drug effects , Ascorbate Peroxidases/isolation & purification , Cell Line , Cell Survival/drug effects , Cytosol/drug effects , Cytosol/enzymology , Hydrogen Peroxide/pharmacology , Hydrogen Sulfide/pharmacology , Kinetics , Models, Biological , Molecular Sequence Data , Nitric Oxide/metabolism , Nitrosation/drug effects , Proteolysis/drug effects , S-Nitrosoglutathione/metabolism , Signal Transduction/drug effects , Time Factors , Nicotiana/drug effects , Ubiquitin/metabolism , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...