Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.310
Filter
1.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
2.
J Agric Food Chem ; 72(20): 11629-11639, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739462

ABSTRACT

Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.


Subject(s)
Anthocyanins , Ascorbic Acid , Blueberry Plants , Cold Temperature , Food Storage , Fruit and Vegetable Juices , Fruit , Anthocyanins/chemistry , Anthocyanins/analysis , Blueberry Plants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Pressure , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/methods , Food Handling/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
3.
Food Chem ; 452: 139528, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733682

ABSTRACT

Precooling is the rapid removal of field heat in harvested crops to preserve their quality and increase their shelf life. The following study was conducted to understand the importance of precooling and to optimize the precooling condition to extend the storage life of potatoes. Therefore, the study was divided into two components. In the first part, the Kufri Jyoti potatoes were subjected to field heat for 0-64 h, then were precooled for 48 h before sending to cold storage for 60 days. The results demonstrated that when the time delay was doubled, starch content (SC) decreased by 15.86%, reducing sugar content (RSC) increased by 32.71%, ascorbic acid content (AAC) decreased by 5.94% and total plate count (TPC) increased by 20.06%. Microstructural changes in potatoes due to the exposure to field heat were visible in SEM images. These results suggested a decrease in the quality of potatoes with an increase in time delay between harvest and cooling. In the second part of the study, the potatoes were precooled for 48 h at different temperatures (T) (6 °C, 8 °C, and 10 °C) and relative humidity (RH) (87%, 91%, and 95%), and their effect was studied on the same quality parameters after storage. Regression models were developed for each response, and models with non-significant lack of fit were selected for optimization. The analysis of the observations has shown that precooling aided in better quality retention of potatoes during cold storage.


Subject(s)
Food Preservation , Food Storage , Plant Tubers , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Plant Tubers/chemistry , Starch/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Hot Temperature , Cold Temperature
4.
Article in English | MEDLINE | ID: mdl-38781815

ABSTRACT

In this work, a new ultra-performance liquid chromatography method based on photodiode array detection (UPLC-PDA) was first developed for the quantitative analysis of the quaternary mixture of ascorbic acid (AA), paracetamol (PAR), caffeine (CAF) and chlorpheniramine maleate (CPA) in a commercial dosage form. The developed UPLC-PDA method offered a new possibility for the co-determination of four active ingredients in a drug combination with short run time and simple sample preparation. The successful chromatographic separation of the four drugs was performed using a Waters Acquity UPLC BEH C18 column (1.7 µm 2.1 × 100 mm) (Mildford, USA) and a mobile phase consisting of water (12 %), acetonitrile (13 %) and 0.1 M H3PO4 (75 %) at a flow rate of 0.25 mL/min. The validation of the proposed UPLC-PDA approach was verified by analyzing synthetic mixtures, inter- and intra-day experiments, and commercial powder samples and provided satisfactory results.


Subject(s)
Acetaminophen , Caffeine , Chlorpheniramine , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Caffeine/analysis , Caffeine/chemistry , Acetaminophen/analysis , Acetaminophen/chemistry , Linear Models , Chlorpheniramine/analysis , Chlorpheniramine/chemistry , Limit of Detection , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Drug Combinations
5.
Colloids Surf B Biointerfaces ; 239: 113953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729021

ABSTRACT

Ascorbic acid (AA) is a powerful antioxidant in food safety and disease treatment. It is of great significance to develop a low-cost, high-stability, and easy-to-operate colorimetric method for quantitative detection of AA in food or human body. Although various nanozymes have been developed for the colorimetric detection of AA, the size regulation of the catalytic center of nanozymes remains a challenge. In this work, we propose a combined strategy of flow chemistry synthesis and pyrolysis to realize the controllable adjustment of the catalytic center size of nanozymes. Zinc-cobalt zeolitic imidazole frameworks (ZnCo-ZIFs) with different sizes are synthesized by flow chemistry. Nitrogen-doped carbon materials with different Co catalytic centers (80 nm-10 nm) are then obtained by pyrolysis of ZnCo-ZIFs precursors. Among them, cobalt quantum dot embedded nitrogen-doped carbon (Co QDs/N-C) exhibits excellent oxidase activity, with Vmax and Km of 4.19 × 10-7 M s-1 and 0.12 mM. Therefore, a simple, low-cost, and stable colorimetric method for the detection of AA is established with a good linear relationship (3-500 µM) and low detection limit (0.40 µM). This work has certain guiding significance for the size regulation of catalytic center of nanozyme, and the detection method has broad application prospects in biochemical sensing field.


Subject(s)
Ascorbic Acid , Carbon , Cobalt , Nitrogen , Quantum Dots , Quantum Dots/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Carbon/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Colorimetry/methods , Particle Size , Limit of Detection , Humans , Surface Properties , Catalysis
6.
Rocz Panstw Zakl Hig ; 75(1): 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38578155

ABSTRACT

Objective: The aim of the study was to determine Vitamin C content in some fruits and vegetables (FAV) including apple, banana, orange, pineapple, watermelon, carrot and cucumber, sold in the local markets in Awka, Anambra State, Nigeria as well as Vitamin C content in two-component and three-component homogenates FAV. The work was also designed to investigate the dietary exposure and health effects of excess vitamin C intake in adults and children. Material and methods: Vitamin C as total ascorbic acid (AA) after reduction of dehydroascorbic acid was analyzed using both titrimetric and spectrophotometric methods. The titrimetric method involved iodometric back-titration while the spectrophotometric method was done at an absorbance of 530 nm. The dietary exposure was evaluated as the total FAV intake multiplied by chemical concentration in the FAV whereas the health effect of excess vitamin C intake was conducted using the hazard quotient (HQ). Results: The results revealed that Vitamin C for single fruits ranged from 11.76 - 41.17 mg/L for spectroscopic method and 16.9 - 31.84 mg/L for titrimetric method. Fruit homogenates showed Vitamin C concentrations of 14.70 - 220.58 mg/L and 17.23 - 209.09 mg/L for two-components homogenates: 29.41-132.35 mg/L and 31.05-113.10 mg/L for tri-components homogenates for spectrophotometric and titrimetric methods respectively. The results of dietary exposure and the health effects of excess vitamin C intake showed that children are more susceptible to health issues than adults in illnesses such as nausea, gastrointestinal pains, increased kidney stones and hyperactivity. Conclusion: There is therefore the need for a national recommended dietary allowance for total ascorbic acid (AA) in FAV homogenates from a stakeholder point of view in Nigeria.


Subject(s)
Ascorbic Acid , Fruit , Adult , Child , Humans , Ascorbic Acid/analysis , Fruit/chemistry , Vegetables/chemistry , Dietary Exposure , Vitamins , Diet
7.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675551

ABSTRACT

This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2-4 °C, 18-22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, ß-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9-39% and 3-11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38-75% in the freeze-dried product and 30-77% in the air-dried product, compared to the raw material.


Subject(s)
Antioxidants , Chlorophyll , Fabaceae , Freeze Drying , Vegetables , Antioxidants/analysis , Antioxidants/chemistry , Vegetables/chemistry , Chlorophyll/analysis , Chlorophyll/chemistry , Fabaceae/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Food Storage/methods , Polyphenols/analysis , Polyphenols/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Desiccation/methods , beta Carotene/analysis , beta Carotene/chemistry , Pisum sativum/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Vitamin E/analysis , Vitamin E/chemistry
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124263, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593539

ABSTRACT

Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5-4.0 mU/mL and 4.0-15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.


Subject(s)
Acid Phosphatase , Limit of Detection , Manganese Compounds , Nanostructures , Oxides , Spectrometry, Fluorescence , Manganese Compounds/chemistry , Oxides/chemistry , Spectrometry, Fluorescence/methods , Humans , Acid Phosphatase/blood , Acid Phosphatase/metabolism , Acid Phosphatase/analysis , Nanostructures/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology
9.
Biosens Bioelectron ; 257: 116296, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643550

ABSTRACT

Breathing is an important physiological activity of human body, which not only reflects the state of human movement, but also is one of the important health indicators. Breathing can change the concentration of water molecules, so monitoring humidity has gradually become a hot topic in modern research. In this study, a humidity sensing composite film with high sensitivity and short response time was made by using the mixture of graphene oxide (GO) and bacterial cellulose (BC) with simple dry film-forming method. L-ascorbic acid was used as reducing agent to reduce GO and improve the conductivity of GO/BC composite film (BG). The influence of different BC contents and the different reduction degree on the resistance change rate of composite film was investigated in details. The maximum resistance change rate of partially reduced BG humidity sensitive composite film reached up to 94%, and the response and recovery time were 13 s and 47 s respectively. Furthermore, the sensor shows obvious resistance change in noncontact sensing test and different breathing states. This kind of humidity sensitive film with fast response and high sensitivity has great potential in human health monitoring and noncontact sensing, and is of great significance in promoting health detection and intelligent life.


Subject(s)
Biosensing Techniques , Cellulose , Graphite , Humidity , Graphite/chemistry , Cellulose/chemistry , Humans , Biosensing Techniques/instrumentation , Bacteria/isolation & purification , Ascorbic Acid/chemistry , Ascorbic Acid/analysis
10.
J Food Sci ; 89(5): 2774-2786, 2024 May.
Article in English | MEDLINE | ID: mdl-38602038

ABSTRACT

Banana is one of the most consumed and popular fruits in all regions of the world, being cultivated mainly in tropical countries. It is not only a rich source of vitamins A, C, and B, calcium, iron, potassium, phosphorus, and other vitamins and nutrients, but it also contains several types of antioxidants with high nutritional value. In this context, the current study aimed to quantify the content of ascorbic acid, flavonoids, pigments, and minerals present in "Nanicão" bananas during the ripening process. As demonstrated, the level of flavonoids was higher in ripe and overripe fruits, whereas the mineral composition was high only at ripening stage 4 (more yellow than green) a stage that should be prioritized when recommending fruit consumption to the population deficient in these minerals. Regarding pigments, there was a reduction in chlorophylls a and b and an increase in carotenoids and anthocyanins in peels and pulps. PRACTICAL APPLICATION: Flavonoids are phenolic, bioactive compounds with proven antioxidant and anti-inflammatory activity and products of the plant's secondary metabolism. The degradation of chlorophylls and synthesis of carotenoids and anthocyanins, and as a consequence of the latter pigment, the increase in flavonoids in the pulp was evident during the monitoring of ripening, mainly in the fruit peels in relation to pigments. Minerals are essential elements, the main ones provided in balanced diets and important for dietary and nutritional health.


Subject(s)
Antioxidants , Carotenoids , Flavonoids , Fruit , Minerals , Musa , Flavonoids/analysis , Fruit/chemistry , Musa/chemistry , Minerals/analysis , Antioxidants/analysis , Carotenoids/analysis , Pigments, Biological/analysis , Chlorophyll/analysis , Ascorbic Acid/analysis , Nutritive Value , Anthocyanins/analysis
11.
Anal Chem ; 96(17): 6683-6691, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619493

ABSTRACT

Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 µM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.


Subject(s)
Ascorbic Acid , Brain , Electrochemical Techniques , Hydrogen Peroxide , Nanotubes, Carbon , Hydrogen Peroxide/analysis , Ascorbic Acid/analysis , Animals , Mice , Brain/metabolism , Nanotubes, Carbon/chemistry , Biosensing Techniques , Electrodes
12.
Int J Biometeorol ; 68(5): 991-1004, 2024 May.
Article in English | MEDLINE | ID: mdl-38528211

ABSTRACT

An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.


Subject(s)
Chlorophyll , Garlic , Ozone , Photosynthesis , Plant Leaves , Ozone/pharmacology , Garlic/drug effects , Chlorophyll/metabolism , Chlorophyll/analysis , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Antioxidants/metabolism , Catalase/metabolism , Peroxidase/metabolism , Plant Stomata/drug effects , Plant Stomata/physiology , Air Pollutants , Ascorbic Acid/analysis
13.
Appl Spectrosc ; 78(6): 633-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38529537

ABSTRACT

The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.


Subject(s)
Acid Phosphatase , Carbon , Colorimetry , Limit of Detection , Phosphorus , Quantum Dots , Colorimetry/methods , Carbon/chemistry , Quantum Dots/chemistry , Humans , Acid Phosphatase/analysis , Acid Phosphatase/blood , Acid Phosphatase/chemistry , Phosphorus/chemistry , Benzidines/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Oxidation-Reduction , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analogs & derivatives
14.
J Food Sci ; 89(5): 2814-2826, 2024 May.
Article in English | MEDLINE | ID: mdl-38551189

ABSTRACT

Conventional methods for inhibiting browning in wine are not suitable for cili (Roxburgh rose) wine, which is naturally rich in ascorbic acid and subject to restrictions on SO2 addition. In this study, the capacity of various additives to suppress the browning of cili wine caused by ascorbic acid degradation was investigated. SO2, pure reduced glutathione (GSH), regular inactive dry yeast (IDY), and IDY with various levels of glutathione enrichment (g-IDY) were separately introduced into cili wine following the completion of alcoholic fermentation. Over a period of 12 months, the color parameters, levels of ascorbic acid, phenolic compounds, antioxidant activity, and GSH content of the aged cili wine were analyzed. Among the investigated additives, g-IDY exhibited the strongest inhibitory effect on browning. Moreover, adding 800 mg L-1 g-IDY increased the total reducing power and residual GSH content by factors of 1.52 and 2.44, respectively, with respect to those of the SO2-treated cili wine, thus enhancing its antioxidant capacity. Using ultra-performance liquid chromatography-tandem mass spectrometry analysis, a total of 22 monomeric phenolic compounds were identified. After g-IDY treatment, the contents of 15 easily oxidizable o-diphenols decreased, preventing the depletion of ascorbic acid as an antioxidant. As a result, the levels of ascorbic acid and total phenolics were 1.5-fold and 1.17-fold higher than those in the SO2-treated wine, respectively. This study demonstrates that g-IDY provides a new approach to preventing the browning of wine caused by ascorbic acid degradation. PRACTICAL APPLICATION: Cili wine, characterized by its high ascorbic acid content, can decelerate cellular senescence and bolster immune function, which has contributed to its popularity. Ascorbic acid, a potent antioxidant, can be spiked into white wines to significantly enhance their antioxidative properties. Nevertheless, the high ascorbic acid content in cili wine renders it susceptible to oxidation under both aerobic and anaerobic conditions, which alters the wine's hue from golden to dark brown, thus diminishing its commercial value. Overcoming this browning associated with ascorbic acid degradation is therefore of considerable importance and could facilitate the advancement of the cili industry.


Subject(s)
Antioxidants , Ascorbic Acid , Color , Fermentation , Glutathione , Phenols , Sulfur Dioxide , Wine , Wine/analysis , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Phenols/analysis , Glutathione/metabolism , Sulfur Dioxide/analysis , Saccharomyces cerevisiae
15.
J Sci Food Agric ; 104(7): 4320-4330, 2024 May.
Article in English | MEDLINE | ID: mdl-38318646

ABSTRACT

BACKGROUND: This study aimed to investigate the effect of 6, 12, and 24 h short-term anaerobic treatment on kiwiberry quality and antioxidant properties at 5 °C. RESULTS: Short-term anaerobic treatment was found to delay ripening and softening in kiwiberries, evident from changes in ethylene release, total soluble solids, starch, protopectin, and fruit texture. The 24 h treatment group exhibited the lowest decay rate of 12% on day 49, a 38% reduction compared with the control group. Anaerobic treatment reduced flesh translucency and decay in the fruit. The 12 h and 24 h treatments enhanced the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, and increased the level of total phenolics, flavonoids, anthocyanins, and ascorbic acid. Moreover, it lowered oxidative damage in cell membranes, evidenced by reduced malondialdehyde content and relative conductivity. CONCLUSION: These results indicate that anaerobic treatment maintains the fruit quality by stimulating its antioxidant defense system. Therefore, short-term anaerobic treatment emerges as a promising method for kiwiberry storage. © 2024 Society of Chemical Industry.


Subject(s)
Actinidia , Antioxidants , Antioxidants/analysis , Actinidia/chemistry , Anthocyanins/analysis , Anaerobiosis , Ascorbic Acid/analysis , Fruit/chemistry
16.
Ultrason Sonochem ; 104: 106812, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394825

ABSTRACT

The aim of the work was to investigate how ultrasonic (US) treatment impacts on the physical and chemical properties of vacuum-impregnated apples. Apple slices were subjected to vacuum impregnation (VI) in an Aloe vera juice solution without additional treatments, serving as the reference material. Alternatively, ultrasound (US) treatments, at frequencies of 25 or 45 kHz, and durations of 10, 20, or 30 min, were employed as a pre-treatments before the VI process. The use of US processing enabled a significant increase in the efficiency of VI, without influencing in a significant way the color of the VI samples. The VI process led to a reduction in the content of bioactive compounds, in particular vitamin C and TPC decreased by 34 and 32 %, respectively. The use of US as a pre-treatment, in particular at 45 kHz for 20 or 30 min, led to a better preservation of these compounds (unchanged values for vitamin C and decrease by 23-26 % for TPC in comparison to the fresh samples). Through cluster analysis encompassing all assessed properties, it was evident that US treatment was beneficial for the processing, however the application of appropriate parameters of US treatment (frequency and time) had an impact on achieving similar quality to VI samples. The ultrasound treatment before vacuum impregnation may be suitable, however, the specific processing parameters should be defined for the obtained high quality of the final product.


Subject(s)
Aloe , Malus , Malus/chemistry , Vacuum , Fruit/chemistry , Ascorbic Acid/analysis
17.
Sci Rep ; 14(1): 4133, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374381

ABSTRACT

Fruit coatings serve a dual purpose in preserving the quality of fruits. Not only do they act as a barrier against water evaporation and fungal infiltration, but they also enhance the fruit's visual appeal in the market. Yet, their influence on the fruit's quality components, which play a crucial role in determining its nutritional value, taste, and overall flavor, has remained relatively unexplored. This study aimed to evaluate the effects of carnauba wax coating on the quality of Moro oranges during storage. The selected fruits were meticulously chosen for uniformity in size. The experiment involved applying carnauba wax, a commonly used type among local producers, at four different concentrations: 0%, 0.5%, 1%, and 1.5%. These treatments were applied during various storage periods, including immediately after fruits were harvested and after 40 and 80 days. Following the application of these treatments, the oranges were stored in a controlled environment (morgue) at a temperature of 4 ± 1 °C. Subsequently, several physicochemical parameters of both the fruit flesh and skin were examined. The results unveiled a decline in the overall ascorbic acid content of the fruits. In terms of phenol content, a general decreasing trend was observed after harvesting. At each sampling interval during storage, the phenol content in uncoated fruits consistently exceeded that of their waxed counterparts. Significant reduction in fruit weight was observed throughout the storage period. Both vitamin C and total acidity levels in the fruit exhibited decreases during the storage period. As time passed, fruit firmness gradually declined, while fruit decay increased during the 40- and 80-day storage periods for untreated Moro oranges. The anthocyanin content showed an increasing trend. The study also unveiled a decline in the antioxidant capacity of citrus fruits during storage. Strong significant positive correlations were observed between total phenol content and key parameters, such as antioxidant activity (0.941**), MDA (0.364*), vitamin C content, and total carbohydrate content (0.475**). Skin radiance showed a perfect correlation with chroma and hue (1.000**). Principal component analysis revealed that the first principal component accounted for 34.27% of the total variance, out of a total of five principal components that explained 77.14% of the variance. Through cluster analysis, the variables were categorized into three distinct groups; one associated with weight loss and another with ion leakage. Considering these findings, carnauba wax-based coating emerges as a promising solution for preserving Moro oranges. It effectively mitigates fruit weight loss and helps maintain fruit firmness during storage, making it a valuable tool for fruit preservation.


Subject(s)
Citrus sinensis , Citrus , Edible Films , Waxes , Citrus sinensis/chemistry , Fruit/chemistry , Food Preservation/methods , Antioxidants/analysis , Ascorbic Acid/analysis , Citrus/microbiology , Phenols/analysis , Weight Loss
18.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396766

ABSTRACT

The manuscript provides an overview of recent scientific reports on the properties and range of health-promoting effects of acerola (Malpighia emarginata DC) fruits and leaves. Acerola is a natural raw material that, in its unprocessed form, is known to be a rich source of vitamin C and polyphenolic compounds. For this reason, the consumption of acerola may provide a number of health-promoting benefits, particularly related to its strong anti-free radical effects. The review discusses anti-inflammatory and anticancer effects of acerola fruit and leaves as well as its therapeutic effects on selected physiological processes in the human system. Their biochemical mechanisms are also explained. Recommendations for the consumption of acerola in the prevention of inflammatory and free radical diseases are presented. The part of the article devoted to anticancer effects of acerola describes the possibilities of using the edible parts of this raw material to obtain products and preparations of potential use in cancer prevention and therapy.


Subject(s)
Antioxidants , Malpighiaceae , Humans , Antioxidants/pharmacology , Antioxidants/analysis , Ascorbic Acid/analysis , Rutin , Fruit/chemistry , Free Radicals/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Malpighiaceae/chemistry , Malpighiaceae/physiology
19.
Water Res ; 253: 121264, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38335842

ABSTRACT

Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.


Subject(s)
Disinfectants , Drinking Water , Sulfites , Thiosulfates , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Chlorine/analysis , Disinfectants/analysis , Halogens/analysis , Disinfection , Chlorides , Ascorbic Acid/analysis , Water Pollutants, Chemical/analysis , Halogenation
20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338784

ABSTRACT

Kiwiberry (Actinidia arguta) is a perennial fruit tree belonging to the family Actinidiaceae. Kiwiberries are known to have an extremely high concentration of sugars, phenolics, flavonoids, and vitamin C, and possess delicious taste and health-promoting properties. Numerous studies have focused on kiwiberry fruits, demonstrating that they possess a higher phytochemical content and greater antioxidant activities than other berry fruits. The purpose of this study was to compare the phytochemical content and antioxidant potential of leaf, stem, root, and fruit extracts from twelve kiwiberry cultivars grown in Wonju, Korea, characterized by a Dwa climate (Köppen climate classification). In most kiwiberry cultivars, the total phenolic (TPC) and total flavonoid (TFC) phytochemical content was significantly higher in leaf and stem tissues, while the roots exhibited higher antioxidant activity. In fruit tissues, the TPC and TFC were higher in unripe and ripe kiwiberry fruits, respectively, and antioxidant activity was generally higher in unripe than ripe fruit across most of the cultivars. Based on our results, among the 12 kiwiberry cultivars, cv. Daebo and cv. Saehan have a significantly higher phytochemical content and antioxidant activity in all of the tissue types, thus having potential as a functional food and natural antioxidant.


Subject(s)
Actinidia , Antioxidants , Antioxidants/chemistry , Plant Extracts/chemistry , Ascorbic Acid/analysis , Phenols/analysis , Fruit/chemistry , Flavonoids/analysis , Phytochemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...