Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.457
Filter
1.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38743838

ABSTRACT

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Subject(s)
Fruit , Melatonin , Photosynthesis , Plant Leaves , Salt Stress , Vitis , Vitis/drug effects , Vitis/physiology , Vitis/growth & development , Melatonin/pharmacology , Melatonin/administration & dosage , Fruit/drug effects , Fruit/growth & development , Salt Stress/drug effects , Plant Leaves/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Ascorbic Acid/pharmacology , Wine
2.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727927

ABSTRACT

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Subject(s)
Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
3.
Pak J Pharm Sci ; 37(1): 53-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741400

ABSTRACT

The study focused on the neuroprotective role of Sorghum bicolor and vitamin C in the amelioration of oxidative stress and anxiety-like behavoiur induced by tramadol in male albino rats. The study design involved 7 groups and a control group with 5 male albino rats in each group. Tramadol (40 mg/kg) treatment was administered for 21 days. Tramadol 40mg/kg was administered in all groups. Pretreatment with varying doses of Sorghum bicolor and Vitamin C was done in three of the groups. Behavioral assessment of anxiety and locomotors actions of the groups were compared using Elevated Plus Maze (EPM) and Open Field Test (OFT). In conclusion, Sorghum bicolor and Vitamin C tramadol ameliorated oxidative stress and anxiety-like behaviour induced by tramadol. Pretreatment with Sorghum bicolor or vitamin C (100mg) can also reduced anxiogenic responses in male albino rats that are induced by chronic tramadol use.


Subject(s)
Anxiety , Ascorbic Acid , Behavior, Animal , Oxidative Stress , Sorghum , Tramadol , Animals , Tramadol/pharmacology , Oxidative Stress/drug effects , Male , Ascorbic Acid/pharmacology , Anxiety/prevention & control , Anxiety/chemically induced , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Rats, Wistar , Analgesics, Opioid/pharmacology , Anti-Anxiety Agents/pharmacology , Maze Learning/drug effects
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731845

ABSTRACT

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Subject(s)
Antioxidants , Moringa oleifera , Plant Extracts , Plant Leaves , Moringa oleifera/chemistry , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Polyphenols/isolation & purification , Polyphenols/pharmacology , Polyphenols/analysis , Polyphenols/chemistry , Ascorbic Acid/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chromatography, High Pressure Liquid/methods , Pressure , Liquid-Liquid Extraction/methods , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
5.
Meat Sci ; 214: 109532, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733667

ABSTRACT

This study aimed to clarify the effect of electrostatic spraying of lactic acid (LE) and ascorbic acid (AE) on vacuum-packaged beef aged at 10 °C. The physicochemical attributes, flavor profiles, and microbial diversities were evaluated. Beef steaks were electrostatically sprayed twice with 4% LE, 0.5% AE, or a mixture of them (LAE). Afterward, the beef was vacuum-packaged and aged. All treated beef exhibited a decrease in quality and sensory scores over time. At the end of the study period, the total viable count (TVC) and the total volatile basic nitrogen values in the control group (7.34 log CFU/g and 15.52 mg/100 g, respectively) were higher than those in the acid-treated groups. The LAE group exhibited the best color stability and the lowest TVC and Enterobacteriaceae counts after aging. High-throughput sequencing analysis revealed that acid types and electrostatic spray could change the microbiota structure. Leuconostoc was the dominant bacteria in the AE and LAE groups, while Enterococcus became the predominant bacteria in the NLE and LE groups with aging. This indicates that electrostatic spray combined with acid treatment can ensure beef quality and microbiological safety at mild temperatures.


Subject(s)
Ascorbic Acid , Lactic Acid , Red Meat , Animals , Cattle , Red Meat/microbiology , Red Meat/analysis , Ascorbic Acid/pharmacology , Lactic Acid/pharmacology , Vacuum , Food Packaging/methods , Taste , Humans , Temperature , Color , Food Microbiology , Microbiota/drug effects , Bacteria/drug effects , Static Electricity , Food Storage
6.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792156

ABSTRACT

Vitamin C (VC), also known as ascorbic acid, plays a crucial role as a water-soluble nutrient within the human body, contributing to a variety of metabolic processes. Research findings suggest that increased doses of VC demonstrate potential anti-tumor capabilities. This review delves into the mechanisms of VC absorption and its implications for cancer management. Building upon these foundational insights, we explore modern delivery systems for VC, evaluating its use in diverse cancer treatment methods. These include starvation therapy, chemodynamic therapy (CDT), photothermal/photodynamic therapy (PTT/PDT), electrothermal therapy, immunotherapy, cellular reprogramming, chemotherapy, radiotherapy, and various combination therapies.


Subject(s)
Ascorbic Acid , Neoplasms , Ascorbic Acid/therapeutic use , Ascorbic Acid/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Combined Modality Therapy
7.
Int J Biol Macromol ; 269(Pt 2): 132263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734332

ABSTRACT

Two low-molecular-weight polysaccharides (DPSP50 and DPSP70) were obtained using hydrogen peroxide-vitamin C (H2O2-Vc) treatment at 50 °C and 70 °C, respectively. Both DPSP50 and DPSP70 comprised the same six monosaccharides in different ratios, and their molecular weights (Mws) were 640 kDa and 346 kDa, respectively. Functional properties analyses demonstrated that DPSP50 and DPSP70 each had an excellent water holding capacity, oil absorption capacity, and emulsion properties, as well as shear-thinning characteristics and viscoelastic properties. Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopic assays confirmed the existence of α-, ß-pyranose rings and the same six sugar residues in DPSP50 and DPSP70. The results of Congo red test, scanning electron microscopy (SEM), and X-ray diffraction (XRD) demonstrated that DPSP50 and DPSP70 did not contain triple-helix conformations, but were amorphous aggregates with flake-like shape and rough surface. Additionally, both DPSP50 and DPSP70 showed strong anti-complementary activities through the classical pathway and the alternative pathway. The results support the potential utility of these degraded polysaccharides from strawberry fruits in functional foods and medicines.


Subject(s)
Fragaria , Fruit , Polysaccharides , Fragaria/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Fruit/chemistry , Molecular Weight , Monosaccharides/analysis , Monosaccharides/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Emulsions/chemistry , Viscosity , Water/chemistry , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology
8.
Medicine (Baltimore) ; 103(20): e38189, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758839

ABSTRACT

To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.


Subject(s)
Ascorbic Acid , Ferroptosis , Molecular Docking Simulation , Network Pharmacology , Ferroptosis/drug effects , Humans , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Network Pharmacology/methods , Neoplasms/drug therapy , Neoplasms/pathology , Protein Interaction Maps/drug effects
9.
Biomed Pharmacother ; 174: 116525, 2024 May.
Article in English | MEDLINE | ID: mdl-38599057

ABSTRACT

PURPOSE: We previously showed the beneficial effect of L-Lysine (Lys), a chemical chaperone, on reducing diabetic complications in diabetic rats and type 2 diabetic patients. Herein, we evaluated the effect of Lys co-administration with Vitamin C and Zinc (Lys+VC+Zn), in diabetic rats. METHODS: The streptozotocin (50 mg/Kg) was injected into male adult Wistar rats to induce diabetes. Then, different groups of normal and diabetic rats were treated with Lys and Lys+VC+Zn for five months. So, there were 0.1 % Lys in the drinking water of both groups. The control groups received water alone. During the experiment, the body weight, and various parameters were determined in the blood, serum/plasma, and urine of the rats. RESULTS: The determination of biochemical indexes confirmed diabetes induction and its complications in rats. Treatment with either Lys or Lys+VC+Zn resulted in reduced blood glucose and protein glycation (decreasing AGEs and HbA1c), increased insulin secretion, alleviated insulin resistance and HOMA-IR, improved lipid profile and HDL functionality (LCAT and PON1), enhanced antioxidant status (FRAP and AOPP), improved kidney function (decreased microalbuminuria, serum urea, and creatinine), and increased chaperone capacity (HSP70). Lys+VC+Zn showed better effects on these parameters than Lys alone. CONCLUSIONS: The results of this study indicated that co-administration of Lys, a chemical chaperone, with two antioxidants (VC and Zn) potentiates its antidiabetic effects and prevent diabetic complications in rat model of diabetes.


Subject(s)
Antioxidants , Ascorbic Acid , Blood Glucose , Diabetes Mellitus, Experimental , Insulin Resistance , Lipids , Lysine , Rats, Wistar , Zinc , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Lysine/pharmacology , Lysine/administration & dosage , Zinc/pharmacology , Antioxidants/pharmacology , Antioxidants/administration & dosage , Rats , Lipids/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Insulin/blood , Drug Therapy, Combination
10.
Bioorg Chem ; 147: 107402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688199

ABSTRACT

A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC50 = 0.04 µM). Notably, compound 2b displayed 89-fold selectivity for MCF-7 breast cancer over MCF-10A normal breast cells. Derivatives with two sulfonate groups (2a-g, 3a-g) exhibited superior potency over those with one sulfonate (4a-c,5g, 6b). Compounds 2b and 2c potently inhibited tubulin polymerization in A-549 cancer cells (73.12 % and 62.09 % inhibition, respectively), substantiating their anticancer potential through microtubule disruption. Molecular docking studies showed higher binding scores and affinities for these compounds at the colchicine-binding site of α, ß-tubulin compared to colchicine itself. In-silico ADMET predictions indicated favourable drug-like properties, with 2b exhibiting the highest binding affinity. These sulfonate derivatives of l-ascorbic acid represents promising lead scaffolds for anticancer drug development.


Subject(s)
Antineoplastic Agents , Ascorbic Acid , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Tubulin Modulators , Tubulin , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Tubulin/metabolism , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Molecular Structure , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Polymerization/drug effects , Sulfonic Acids/chemistry , Sulfonic Acids/antagonists & inhibitors , Sulfonic Acids/pharmacology , Cell Line, Tumor
11.
Nutrients ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674790

ABSTRACT

Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.


Subject(s)
Actinidia , Antioxidants , Fruit , Neuroprotective Agents , Animals , Actinidia/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Male , Fruit/chemistry , Neuroprotective Agents/pharmacology , Swine , Brain/metabolism , Brain/drug effects , Humans , Oxidative Stress/drug effects , Diet , Bread , Polyphenols/pharmacology , Models, Animal , Ascorbic Acid/pharmacology
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673767

ABSTRACT

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Subject(s)
Energy Metabolism , Osteoblasts , Osteogenesis , Oxidative Stress , Animals , Mice , Osteogenesis/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Line , Glycerophosphates/metabolism , Glycerophosphates/pharmacology , Calcification, Physiologic , Cell Differentiation , Cell Culture Techniques/methods , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Culture Media/chemistry , Culture Media/pharmacology
13.
Nutrients ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674812

ABSTRACT

BACKGROUND: The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of PD. However, its effect on microglial functions in neuroinflammation remains to be clarified. Glycogen synthase kinase 3ß (GSK3ß) is a serine/threonine kinase having a role in driving inflammatory responses, making GSK3ß inhibitors a promising target for anti-inflammatory research. METHODS: In this study, we investigated the possible involvement of GSK3ß in Vit C neuroprotective effects by using a well-known 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and a cellular model of neuroinflammation, represented by Lipopolysaccharide (LPS)-activated BV-2 microglial cells. RESULTS: We demonstrated the ability of Vit C to decrease the expression of different mediators involved in the inflammatory responses, such as TLR4, p-IKBα, and the phosphorylated forms of p38 and AKT. In addition, we demonstrated for the first time that Vit C promotes the GSK3ß inhibition by stimulating its phosphorylation at Ser9. CONCLUSION: This study evidenced that Vit C exerts an anti-inflammatory function in microglia, promoting the upregulation of the M2 phenotype through the activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Ascorbic Acid , Neuroinflammatory Diseases , Neuroprotective Agents , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Ascorbic Acid/pharmacology , Cell Line , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phosphorylation/drug effects , Serine/metabolism
14.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38587267

ABSTRACT

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Subject(s)
Ascorbic Acid , Cell Proliferation , Muscle, Skeletal , Myoblasts , PAX7 Transcription Factor , Regeneration , Animals , Male , Mice , Ascorbic Acid/pharmacology , Cell Line , Cell Proliferation/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Regeneration/drug effects , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/drug effects
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124263, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593539

ABSTRACT

Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5-4.0 mU/mL and 4.0-15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.


Subject(s)
Acid Phosphatase , Limit of Detection , Manganese Compounds , Nanostructures , Oxides , Spectrometry, Fluorescence , Manganese Compounds/chemistry , Oxides/chemistry , Spectrometry, Fluorescence/methods , Humans , Acid Phosphatase/blood , Acid Phosphatase/metabolism , Acid Phosphatase/analysis , Nanostructures/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology
16.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Article in English | MEDLINE | ID: mdl-38663265

ABSTRACT

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Subject(s)
Ascorbic Acid , Oxidative Stress , Penicillium , Plant Diseases , Pyrus , Pyrus/microbiology , Penicillium/physiology , Penicillium/drug effects , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Plant Diseases/microbiology , Oxidative Stress/drug effects , Gene Expression Profiling , Basidiomycota/physiology , Transcriptome
17.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38583183

ABSTRACT

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Subject(s)
Ascorbic Acid , Colorectal Neoplasms , Humans , Caco-2 Cells , Ascorbic Acid/pharmacology , Promyelocytic Leukemia Nuclear Bodies , DNA Methylation , Nuclear Bodies , Vitamins , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
18.
Toxicol Ind Health ; 40(6): 323-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597120

ABSTRACT

The present study evaluated the protective effect of ascorbic acid (ASCB) against gasoline fumes (PET) induced testicular oxidative stress, sperm toxicity, and testosterone imbalance in Wistar rats. Twenty-four (24) male albino rats (75 ± 16 g) were randomized into three experimental groups (N = 8). The control group: received normal saline, PET group: exposed to PET 6 h daily by inhalation in an exposure chamber and PET + 200 mg ASCB/kg body weight group: exposed to PET 6 h daily by inhalation and administered ASCB per os. Treatment of ASCB and PET exposure was done thrice and five times weekly for a period of 10 weeks respectively. ASCB co-treatment prevented PET-induced increases in the oxidative stress markers (glutathione, glutathione S-transferase, superoxide dismutase, catalase, hydrogen peroxide generation, nitric oxide, and lipid peroxidation) and serum testosterone concentration (p < .05). Sperm quality was low and those with damaged heads and tails increased alongside histological injuries in the PET-exposed rats, which were also minimized with ASCB administration. ASCB protected against PET-induced oxidative stress, sperm, and testis damage in rats.


Subject(s)
Ascorbic Acid , Gasoline , Oxidative Stress , Rats, Wistar , Spermatozoa , Testis , Testosterone , Animals , Male , Gasoline/toxicity , Testosterone/blood , Oxidative Stress/drug effects , Spermatozoa/drug effects , Ascorbic Acid/pharmacology , Testis/drug effects , Rats , Antioxidants/pharmacology , Lipid Peroxidation/drug effects
19.
Food Chem ; 448: 139073, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574713

ABSTRACT

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Subject(s)
Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
20.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38451201

ABSTRACT

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Subject(s)
Auditory Cortex , Tinnitus , Rats , Animals , Auditory Cortex/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Neuroprotection , Tinnitus/drug therapy , Tinnitus/metabolism , Glutamic Acid/metabolism , Disease Models, Animal , Amino Acid Transport System X-AG/metabolism , Excitatory Amino Acid Transporter 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...