Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 34(9): 132, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30105532

ABSTRACT

Actinomycetes, a Gram positive bacteria, well reported as a source of antibiotics, also possess potential to control various plant pathogens, besides acting as plant growth promoting agent. Chemicals in different forms are extensively being used in vegetable farming, adversely affecting the environment and consumer health. Microbial agent like actinomycetes can substantially replace these harmful chemicals, and have now started finding a place as an important input in to farming practices. Only selected vegetable crops belonging to 11 different families have been explored with use of actinomycetes as biocontrol and plant growth promoting agent till now. It provides ample opportunities to vegetable researchers, to further explore with use of this very important group of microorganisms, in order to achieve even higher production level of safe vegetables. Mycostop and Actinovate are two actinomycetes based formulations globally available for use in vegetable farming as a substitute for chemical formulations. Present review article has summarized the literature available on use of actinomycetes in vegetable farming. Existing wide gap in knowledge, and potential thrust areas for future research have also been projected.


Subject(s)
Actinobacteria/physiology , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Plant Development , Vegetables/growth & development , Vegetables/microbiology , Agriculture , Amaranthaceae/growth & development , Amaranthaceae/microbiology , Amaryllidaceae/growth & development , Amaryllidaceae/microbiology , Antibiosis , Apiaceae/growth & development , Apiaceae/microbiology , Asparagaceae/growth & development , Asparagaceae/microbiology , Asteraceae/growth & development , Asteraceae/microbiology , Biological Control Agents , Brassicaceae/growth & development , Brassicaceae/microbiology , Cucurbitaceae/growth & development , Cucurbitaceae/microbiology , Fabaceae/growth & development , Fabaceae/microbiology , Plant Diseases/prevention & control , Solanaceae/growth & development , Solanaceae/microbiology , Zingiberaceae/growth & development , Zingiberaceae/microbiology
2.
Environ Sci Pollut Res Int ; 24(23): 19249-19258, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28667583

ABSTRACT

This study examined the performance of the chitosan-immobilized cadmium-resistant bacteria Arthrobacter sp. and Micrococcus sp. on cadmium phytoremediation by Chlorophytum laxum in cadmium-polluted soil. These immobilized cadmium-resistant bacteria can survive in cadmium-contaminated soil and significantly increased soil cadmium solubility, but the ability of chitosan-immobilized cells to increase cadmium solubility was lower than that of free cells. A pot experiment demonstrated that chitosan-immobilized Micrococcus sp. promoted the growth of C. laxum planted in cadmium-contaminated soil. A significant increase in the cadmium concentration in the roots and aboveground parts of C. laxum was found in plants inoculated with free and chitosan-immobilized cells of these bacteria. The performance of Arthrobacter sp. free cells to augment cadmium accumulation in C. laxum was a little bit better than that of chitosan-immobilized Arthrobacter sp., except at 9 weeks after planting. The phytoextraction coefficient, bioaccumulation factor, and translocation factor of C. laxum inoculated with free and chitosan-immobilized cells of cadmium-resistant bacteria were higher than those of the uninoculated control and increased with time. Our findings suggest that chitosan-immobilized cells can be exploited to enhance the efficiency of cadmium phytoremediation by C. laxum.


Subject(s)
Arthrobacter/growth & development , Asparagaceae/growth & development , Cadmium/analysis , Chitosan/chemistry , Micrococcus/growth & development , Soil Pollutants/analysis , Arthrobacter/drug effects , Asparagaceae/drug effects , Biodegradation, Environmental , Cadmium/toxicity , Micrococcus/drug effects , Models, Theoretical , Plant Roots/growth & development , Soil/chemistry , Soil Microbiology , Soil Pollutants/toxicity
3.
Sci Rep ; 7(1): 3616, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620183

ABSTRACT

Zhe-Maidong (Ophiopogon japonicus (L.f.) Ker-Gawl) is a traditional medicinal herb in the family Liliaceae that has significant pharmacological effects on immunity and cardiovascular disease. In this study, three different growth stages of Zhe-Maidong were investigated using RNA-seq, and a total of 16.4 Gb of raw data was obtained. After filtering and assembling, 96,738 unigenes with an average length of 605.3 bp were ultimately generated. A total of 77,300 unigenes were annotated using information from five databases, including the NT, NR, SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. Additionally, the mechanisms of flavonoid, saponin and polysaccharide biosynthesis and of accumulation at different stages of tuber development were also characterized. From the first to third years, the contents of flavonoids, saponins and polysaccharides all increased, whereas the expression levels of related genes decreased in the flavonoid and saponin pathways and first increased and then decreased in the polysaccharide pathway. The results of this study provide the most comprehensive expressed sequence resource for Zhe-Maidong and will expand the available O. japonicus gene library and facilitate further genome-wide research and analyses of this species.


Subject(s)
Asparagaceae/growth & development , Asparagaceae/genetics , Computational Biology , Gene Expression Profiling , Molecular Sequence Annotation , Transcriptome , Asparagaceae/metabolism , Computational Biology/methods , Flavonoids/metabolism , Gene Expression Regulation, Plant , Gene Ontology , High-Throughput Nucleotide Sequencing , Life Cycle Stages , Metabolic Networks and Pathways
4.
N Biotechnol ; 33(6): 883-890, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27609107

ABSTRACT

In the current study, we evaluated the effect of α-naphthaleneacetic acid (NAA) individually or in combination with different cytokinins (CKs) including benzyladenine (BA), meta-topolin (mT) and isopentenyladenine (iP) on organogenesis, auxin and CK content in Eucomis autumnalis subspecies autumnalis (EA) and Eucomis zambesiaca (EZ). These species were used as model plants due to their ornamental and medicinal properties. Three leaf explants were inoculated in screw-cap jars containing 30mL Murashige and Skoog (MS) media supplemented with 5µM NAA alone or in combination with 5µM CK (BA, mT or iP). After 10 weeks (EA) or 15 weeks (EZ), parameters including shoot and root growth as well as plant fresh weight were recorded. For analysis of auxin and CK content, whole plantlets were harvested, pooled and freeze-dried for the different treatments. In both species, shoot and root proliferation as well as plant biomass were generally higher when NAA was combined with the individual CK than in NAA or CK treatment. The highest concentration of indole-3-acetic acid (IAA, 619pmolg-1 DW) and 2-oxindole-3-acetic acid (OxIAA, 2381pmolg-1 DW) were observed in EA-treated with NAA alone while mT treatment (without NAA) had the most abundant indole-3-acetyl-l-aspartic acid (IAAsp, 904 and 582pmolg-1 DW for EA and EZ, respectively) in both species. A significant concentration of total endogenous CK accumulated in both Eucomis regenerants from mT and mT+NAA when compared to the other treatments. The majority of the detected CKs were of the aromatic CK-type, mainly free bases. The potential physiological roles of these quantified phytohormones in relation to the observed morphological responses are discussed.


Subject(s)
Asparagaceae/growth & development , Asparagaceae/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Asparagaceae/drug effects , Biomass , Biotechnology , Cytokinins/administration & dosage , Drug Interactions , Indoleacetic Acids/administration & dosage , Naphthaleneacetic Acids/administration & dosage , Naphthaleneacetic Acids/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Species Specificity
5.
Plant Cell Rep ; 35(1): 227-38, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26521209

ABSTRACT

KEY MESSAGE: The current evidence of regulatory effect of smoke-water (SW) and karrikinolide (KAR(1)) on the concentrations of endogenous cytokinins in plants partly explain the basis for their growth stimulatory activity. Karrikinolide (KAR1) which is derived from smoke-water (SW) is involved in some physiological aspects in the life-cycle of plants. This suggests a potential influence on the endogenous pool (quantity and quality) of phytohormones such as cytokinins (CKs). In the current study, the effect of SW (1:500; 1:1000; 1:1500 v/v dilutions) and KAR1 (10(-7); 10(-8); 10(-9) M) applied during micropropagation of Eucomis autumnalis subspecies autumnalis on the ex vitro growth and CKs after 4 months post-flask duration was evaluated. The interactions of SW and KAR(1) with benzyladenine (BA), α-naphthaleneacetic acid (NAA) or BA+NAA were also assessed. Plants treated with SW (1:500) and KAR1 (10(-8) M) demonstrated superior growth in terms of the rooting, leaf and bulb sizes and fresh biomass than the control and plants treated with BA and BA+NAA. However, plant growth was generally inhibited with either SW (1:500) or KAR1 (10(-8) M) and BA when compared to BA (alone) treatment. Relative to NAA treatment, the presence of KAR(1) (10(-7) M) with NAA significantly increased the leaf area and fresh biomass. Both SW and KAR1-treated plants accumulated more total CKs, mainly isoprenoid-type than the control and NAA-treated plants. The highest CK content was also accumulated in SW (1:500) with BA+NAA treatments. Similar stimulatory effects were observed with increasing concentrations of KAR(1) and BA. The current findings establish that SW and KAR1 exert significant influence on the endogenous CK pools. However, the better growth of plants treated with SW and KAR1 treatments was not exclusively related to the endogenous CKs.


Subject(s)
Acclimatization , Asparagaceae/drug effects , Cytokinins/analysis , Furans/pharmacology , Plant Growth Regulators/analysis , Pyrans/pharmacology , Asparagaceae/growth & development , Asparagaceae/physiology , Biomass , Cytokinins/metabolism , Naphthaleneacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/physiology , Plants, Medicinal , Poaceae , Smoke , Water/chemistry
6.
Plant Cell Rep ; 25(6): 499-506, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16477407

ABSTRACT

An efficient in vitro multiplication system via multiple shoot bud induction and regeneration has been developed in Chlorophytum arundinaceum using shoot crown explants. Optimum regeneration frequency (87%) and desirable organogenetic response in the form of de novo organized multiple shoot buds without an intervening callus phase was obtained on Murashige and Skoog's (MS) minimal organics medium containing 3% sucrose (w/v) supplemented with 4 x 10(-6) M Kn and 2 x 10(-6) MIBA. Axenic secondary explants with multiple shoot buds on subculturing elicited best response with 1 x 10(-5) M Kinetin (Kn) and 5 x 10(-6) M indole-3-butyric acid (IBA) giving rise to an average of 18.74 shoots per culture with mean shoot length of 7.6 cm +/- 1.73. Varying molar ratios of either Kn/IBA or Kn/NAA revealed statistically significant differences in the regeneration frequencies among the phytohormone treatments. It was observed that the shoot bud differentiation and regeneration was influenced by the molar ratios of cytokinins/auxin rather than their relative concentrations. Healthy regenerated shoots were rooted in half strength MS basal medium containing 3% sucrose (w/v) supplemented with 5 x 10(-6) M IBA. Following simple hardening procedures, rooted plantlets, were transferred to soil-sand (1:1; v/v) with more than 90% success. Genetic fidelity was assessed using random amplified polymorphic DNA (RAPD), karyotype analysis and meiotic behaviour of in vitro and in vivo plants. Five arbitrary decamers displayed same banding profile within all the micropropagated plants and in vivo explant donor. The cytological and molecular analysis complemented and compared well and showed no genomic alterations in the plants regenerated through shoot bud differentiation. High multiplication frequency, molecular, cytological and phenotypic stability ensures the efficacy of the protocol developed for the production and conservation of this important endangered medicinal herb.


Subject(s)
Asparagaceae/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Plants, Medicinal/growth & development , Asparagaceae/genetics , Asparagaceae/physiology , Chromosomes, Plant , Culture Techniques , Karyotyping , Meiosis , Plant Roots/genetics , Plant Roots/physiology , Plant Shoots/genetics , Plant Shoots/physiology , Plants, Medicinal/genetics , Plants, Medicinal/physiology , Random Amplified Polymorphic DNA Technique , Regeneration
7.
J Plant Physiol ; 161(6): 709-13, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15266718

ABSTRACT

In the day-neutral plant Polianthes tuberosa (cv. Double) putrescine and spermine in corms at the early floral initiation stage decreased by 26 and 36%, respectively, compared with that in the vegetative stage. In contrast, a sharp increase in spermidine and cadaverine titers in corms was recorded at the early floral initiation stage. However, cadaverine in corms disappeared at the flower development stage. Polyamines in the roots were generally lower than those in the leaves and corms. In no case was the change in endogenous polyamine titers in the roots and leaves associated with floral initiation and flower development in P. tuberosa. Exogenous application of spermidine at 5, 25 or 150 microg per plant at the vegetative stage did not affect flower primordium counts. However, addition of a spermidine synthase inhibitor, cyclohexylamine, at 150 or 250 microg per plant (each dose was applied two times in total at an interval of 4 days) significantly reduced flower primordium counts, indicating that spermidine is involved in floral initiation and floral development in P. tuberosa. In P. tuberosa corms at the vegetative stage arginine decarboxylase activity rises and decreases at the early floral initiation stage. In contrast, ornithine decarboxylase activity reaches the highest level at the early floral initiation stage and declines significantly at the vegetative stage. Results indicate that an increase in spermidine and a transient increase in cadaverine titers in the corms seem characteristic of early floral initiation in P. tuberosa. It is also suggested that a significant reduction in putrescine and spermine in the corms is involved in the early floral initiation in P. tuberosa.


Subject(s)
Asparagaceae/growth & development , Flowers/physiology , Polyamines/metabolism , Asparagaceae/enzymology , Carboxy-Lyases/metabolism , Ornithine Decarboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...