Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 321
Filter
1.
Prep Biochem Biotechnol ; 54(5): 709-719, 2024 May.
Article in English | MEDLINE | ID: mdl-38692288

ABSTRACT

Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.


Subject(s)
Asparaginase , Escherichia coli , Recombinant Proteins , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Glycerol/metabolism , Gene Expression Regulation, Bacterial
2.
Arch Microbiol ; 206(6): 266, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761213

ABSTRACT

We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.


Subject(s)
Asparaginase , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/chemistry , Asparaginase/isolation & purification , Asparaginase/pharmacology , Humans , Bacillaceae/enzymology , Bacillaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Jurkat Cells , Mutation , Amino Acid Sequence , Kinetics
3.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38467390

ABSTRACT

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Subject(s)
Asparaginase , Bacillus , Humans , Asparaginase/genetics , Bacillus/genetics , Asparagine , Temperature
4.
Int J Biol Macromol ; 257(Pt 2): 128690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092107

ABSTRACT

Type II L-asparaginase (ASNase) has been approved by the FDA for treating acute lymphoid leukemia (ALL), but its therapeutic effect is limited by low catalytic efficiency and L-glutaminase (L-Gln) activity. This study utilized free energy based molecular dynamics calculations to identify residues associated with substrate binding in Bacillus licheniformis L-asparaginase II (BLASNase) with high catalytical activity. After saturation and combination mutagenesis, the mutant LGT (74 L/75G/111 T) with intensively reduced l-glutamine catalytic activity was generated. The l-glutamine/L-asparagine activity (L-Gln/L-Asn) of LGT was only 6.6 % of parent BLASNase, whereas the L-asparagine (L-Asn) activity was preserved >90 %. Furthermore, structural comparison and molecular dynamics calculations indicated that the mutant LGT had reduced binding ability and affinity towards l-glutamine. To evaluate its effect on acute leukemic cells, LGT was supplied in treating MOLT-4 cells. The experimental results demonstrated that LGT was more cytotoxic and promoted apoptosis compared with commercial Escherichia coli ASNase. Overall, our findings firstly provide insights into reducing l-glutamine activity without impacting L-asparagine activity for BLASNase to possess remarkable potential for anti-leukemia therapy.


Subject(s)
Antineoplastic Agents , Bacillus licheniformis , Asparaginase/genetics , Asparaginase/pharmacology , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Asparagine/metabolism , Glutaminase/metabolism , Glutamine/metabolism , Antineoplastic Agents/chemistry
5.
Future Microbiol ; 19: 157-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882841

ABSTRACT

Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.


Asparaginase is a common treatment for the most common type of leukemia in children. These treatments generally use asparaginase sourced from bacteria. Some people can experience bad reactions to these treatments. One way that has been explored to avoid this is to use asparaginase sourced from fungi because they are more similar to humans. However, fungi produce less asparaginase than bacteria. This review looks into ways that the production of fungal asparaginases can be made more productive.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/genetics , Asparaginase/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Bacteria/metabolism , Antineoplastic Agents/therapeutic use
6.
Int J Biol Macromol ; 254(Pt 3): 127998, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949271

ABSTRACT

L-asparaginase from Escherichia coli (EcA) has been used for the treatment of acute lymphoid leukemia (ALL) since the 1970s. Nevertheless, the enzyme has a second specificity that results in glutaminase breakdown, resulting in depletion from the patient's body, causing severe adverse effects. Despite the huge interest in the use of this enzyme, the exact process of glutamine depletion is still unknown and there is no consensus regarding L-asparagine hydrolysis. Here, we investigate the role of T12, Y25, and T89 in asparaginase and glutaminase activities. We obtained individual clones containing mutations in the T12, Y25 or T89 residues. After the recombinant production of wild-type and mutated EcA, The purified samples were subjected to structural analysis using Nano Differential Scanning Fluorimetry, which revealed that all samples contained thermostable molecules in their active structural conformation, the homotetramer conformation. The quaternary conformation was confirmed by DLS and SEC. The activity enzymatic assay combined with molecular dynamics simulation identified the contribution of T12, Y25, and T89 residues in EcA glutaminase and asparaginase activities. Our results mapped the enzymatic behavior paving the way for the designing of improved EcA enzymes, which is important in the treatment of ALL.


Subject(s)
Asparaginase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/genetics , Asparaginase/therapeutic use , Asparaginase/chemistry , Glutaminase/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Asparagine/chemistry , Molecular Dynamics Simulation , Escherichia coli/metabolism
7.
Biochim Biophys Acta Gen Subj ; 1868(1): 130499, 2024 01.
Article in English | MEDLINE | ID: mdl-37914146

ABSTRACT

BACKGROUND: L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW: The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS: The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE: This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Asparaginase/genetics , Asparaginase/therapeutic use , Asparaginase/chemistry , Antineoplastic Agents/chemistry , Asparagine , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Glutamine/metabolism
8.
Int J Biol Macromol ; 253(Pt 5): 127742, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37923039

ABSTRACT

Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.


Subject(s)
Antineoplastic Agents , Dickeya chrysanthemi , Stomach Neoplasms , Humans , Animals , Mice , Asparaginase/genetics , Asparaginase/pharmacology , Asparaginase/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dickeya chrysanthemi/genetics , Dickeya chrysanthemi/metabolism , Asparagine , Glutamine , Stomach Neoplasms/drug therapy , Enterobacteriaceae/metabolism , Serum Albumin
9.
Pak J Biol Sci ; 26(7): 392-402, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37902081

ABSTRACT

<b>Background and Objective:</b> Type 2 L-asparaginase enzyme can be used as a cancer therapy agent and prevent acrylamide formation in food products. Enzymes produced by thermohalophilic bacteria can provide high activity at high temperatures so they are needed on an industrial scale. Hence, this study aims to determine the characteristics of the gene encoding type 2 L-asparaginase enzyme in the thermohalophilic bacterial isolate CAT3.4. <b>Materials and Methods:</b> This research is a type of exploratory research. The characteristics of the gene encoding type 2 L-asparaginase were determined using the PCR technique using the primer pairs AsnBac2-F2 (5'-CTCACGGGAATCTCCATAACTC-3') and AsnBac2-R2 (5'CAGCGATGTAACAGACAGCATC-3'). The characterization process was carried out in stages: Isolation of genomic DNA using a modified alkali-lysis method, nucleotide and protein similarity analysis using BLASTn analysis on the NCBI website, construction of a phylogenetic tree using the MEGAX program, restriction enzyme mapping and amino acid analysis using the Bioedit program. <b>Results:</b> The characterization results showed that the PCR product has a size of 1594 bp with a CDS of 1128 bp, has a similarity value of 100% with <i>Bacillus subtilis</i>, has seven restriction enzymes as molecular markers for the type 2 L-asparaginase gene at the species level: <i>Bsr</i>GI, <i>Dra</i>I, <i>Eco</i>RV, <i>Hind</i>III, <i>Hpy</i>CH4IV , <i>Ssp</i>I and <i>Tai</i>I, have dominant hydrophilic regions and are in the same subclass as <i>Bacillus subtilis</i> strain GOT9. <b>Conclusion:</b> The target gene was similar to the gene encoding type 2 L-asparaginase from <i>Bacillus subtilis</i> with a max identity of 98.85%, query coverage value of 100% and E-value of 0.


Subject(s)
Asparaginase , Hot Springs , Asparaginase/genetics , Asparaginase/chemistry , Asparaginase/metabolism , Indonesia , Phylogeny , Bacillus subtilis/genetics
10.
J Biotechnol ; 377: 1-12, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37806388

ABSTRACT

Studies involving endophytic fungi aim to identify organisms inhabiting extreme and relatively unexplored environments, as these fungi possess unique characteristics and uncommon biochemical pathways that enable them to produce compounds with biotechnological potential. Among various enzymes, L-Asparaginase is employed in the treatment of Acute Lymphoblastic Leukemia. In this study, we identified endophytic fungi from Sanionia uncinata and Polytrichastrum alpinum collected on King George Island in Antarctica. The fungi were categorized into morphological groups based on their characteristics, molecularly identified, and assessed for L-Asparaginase (L-ASNase) enzyme production. Subsequently, production optimization was conducted. A total of 161 endophytes were isolated from 504 moss gametophytes, with 107 originating from P. alpinum and 54 from S. uncinata. These isolates were categorized into 31 morphotypes. Fungi exhibiting high enzyme production were identified molecularly. Among them, nine identified isolates belonged to the genera Aspergillus, Collariella, Diaporthe, Epicoccum, Peroneutypa, Xylaria, and Trametes. Three of these isolates were identified at the species level through multigene phylogeny, namely Epicoccum nigrum, Collariella virescens, and Peroneutypa scoparia. All 31 fungi were subjected to solid media testing for L-ASNase enzyme production, with 22 isolates demonstrating production capability, and 13 of them produced L-ASNase free from Urease and Glutaminase. The isolates displaying solid media production underwent further testing in liquid media, all of which exhibited enzyme production ranging from 0.75 to 1.29 U g-1. Notably, the three fungi identified at the species level were the highest producers of the enzyme (1.29, 1.17, and 1.13 U g-1). The production of these fungi was optimized using the Taguchi method, resulting in production values ranging from 0.687 to 2.461 U g-1. In conclusion, our findings indicate that Antarctic moss endophytic fungi exhibit significant potential for the production of the anti-leukemic enzyme L-ASNase.


Subject(s)
Bryophyta , Bryophyta/microbiology , Asparaginase/genetics , Urease , Glutaminase , Antarctic Regions , Trametes , Fungi , Endophytes/genetics
11.
Epigenetics ; 18(1): 2268814, 2023 12.
Article in English | MEDLINE | ID: mdl-37839090

ABSTRACT

Asparaginase is an important agent for the treatment of acute lymphoblastic leukaemia (ALL), but it is occasionally associated with severe adverse events. Thus, for safer and more efficacious therapy, a clinical biomarker predicting asparaginase sensitivity is highly anticipated. Asparaginase depletes serum asparagine by deaminating asparagine into aspartic acid, and ALL cells are thought to be sensitive to asparaginase due to reduced asparagine synthetase (ASNS) activity. We have recently shown that allele-specific methylation of the ASNS gene is highly involved in asparaginase sensitivity in B-precursor ALL (BCP-ALL) by using next-generation sequence (NGS) analysis of bisulphite PCR products of the genomic DNA. Here, we sought to confirm the utility of methylation status of the ASNS gene evaluated with high-performance liquid chromatography (HPLC) analysis of bisulphite PCR products for future clinical applications. In the global methylation status of 23 CpG sites at the boundary region of promoter and exon 1 of the ASNS gene, a strong positive correlation was confirmed between the mean percent methylation evaluated with the HPLC method and that with the NGS method in 79 BCP-ALL cell lines (R2 = 0.85, p = 1.3 × 10-33) and in 63 BCP-ALL clinical samples (R2 = 0.84, p = 5.0 × 10-26). Moreover, methylation status of the ASNS gene evaluated with the HPLC method was significantly associated with in vitro asparaginase sensitivities as well as gene and protein expression levels of ASNS. These observations indicated that the ASNS gene methylation status evaluated with the HPLC method is a reliable biomarker for predicting the asparaginase sensitivity of BCP-ALL.


Subject(s)
Aspartate-Ammonia Ligase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/therapeutic use , Asparagine/genetics , Asparagine/metabolism , Asparagine/therapeutic use , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Chromatography, High Pressure Liquid , Pharmacogenetics , DNA Methylation , Cell Line, Tumor , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
12.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894901

ABSTRACT

Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.


Subject(s)
Antineoplastic Agents , Leukemia , Humans , Asparaginase/genetics , Asparaginase/metabolism , Asparagine , Leukemia/drug therapy , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Biological , Antineoplastic Agents/therapeutic use
13.
Braz J Microbiol ; 54(3): 1573-1587, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480457

ABSTRACT

L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. The present work aimed to study the endophytic fungal diversity of Grewia hirsuta and their ability to produce L-asparaginase. A total of 1575 culturable fungal endophytes belonging to four classes, Agaricomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes, were isolated. The isolates were grouped into twenty-one morphotypes based on their morphological characteristics. Representative species from each group were identified based on their microscopic characteristics and evaluation of the ITS and LSU rDNA sequences. Most of the fungal endophytes were recovered from the leaves compared to other plant parts. Diaporthe sp. was the predominant genus with a colonization frequency of 8.62%. Shannon-Wiener index for diversity ranged from 2.74 to 2.88. All the plant parts showed similar Simpson's index values, indicating a uniform species diversity. Among the sixty-three fungal endophytes screened, thirty-two were identified as L-asparaginase-producing isolates. The enzyme activities of fungal endophytes estimated by the nesslerization method were found to be in the range of 4.65-0.27 IU/mL with Fusarium foetens showing maximum enzyme activity of 4.65 IU/mL. This study for the first time advocates the production of L-asparaginase from Fusarium foetens along with the endophytic fungal community composition of Grewia hirsuta. The results indicate that the fungal endophyte Fusarium foetens isolated in the present study could be a potent source of L-asparaginase.


Subject(s)
Grewia , Plants, Medicinal , Asparaginase/genetics , Endophytes/genetics
14.
Curr Microbiol ; 80(9): 282, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450223

ABSTRACT

L-asparaginase is a tetrameric enzyme from the amidohydrolases family, that catalyzes the breakdown of L-asparagine into L-aspartic acid and ammonia. Since its discovery as an anticancer drug, it is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. Apart from its use in the biopharmaceutical industry, it is also used to reduce the formation of a carcinogenic substance called acrylamide in fried, baked, and roasted foods. L-asparaginase is derived from many organisms including plants, bacteria, fungi, and actinomycetes. Currently, L-asparaginase preparations from Escherichia coli and Erwinia chrysanthemi are used in the clinical treatment of acute lymphoblastic leukemia. However, they are associated with low yield and immunogenicity problems. At this juncture, endophytic fungi from medicinal plants have gained much attention as they have several advantages over the available bacterial preparations. Many medicinal plants have been screened for L-asparaginase producing endophytic fungi and several studies have reported potent L-asparaginase producing strains. This review provides insights into fungal endophytes from medicinal plants and their significance as probable alternatives for bacterial L-asparaginase.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Asparaginase/genetics , Asparaginase/therapeutic use , Asparaginase/metabolism , Antineoplastic Agents/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Bacteria/metabolism , Fungi/metabolism
15.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298582

ABSTRACT

L-asparaginases (L-ASNases) of microbial origin are the mainstay of blood cancer treatment. Numerous attempts have been performed for genetic improvement of the main properties of these enzymes. The substrate-binding Ser residue is highly conserved in L-ASNases regardless of their origin or type. However, the residues adjacent to the substrate-binding Ser differ between mesophilic and thermophilic L-ASNases. Based on our suggestion that the triad, including substrate-binding Ser, either GSQ for meso-ASNase or DST for thermo-ASNase, is tuned for efficient substrate binding, we constructed a double mutant of thermophilic L-ASNase from Thermococcus sibiricus (TsA) with a mesophilic-like GSQ combination. In this study, the conjoint substitution of two residues adjacent to the substrate-binding Ser55 resulted in a significant increase in the activity of the double mutant, reaching 240% of the wild-type enzyme activity at the optimum temperature of 90 °C. The mesophilic-like GSQ combination in the rigid structure of the thermophilic L-ASNase appears to be more efficient in balancing substrate binding and conformational flexibility of the enzyme. Along with increased activity, the TsA D54G/T56Q double mutant exhibited enhanced cytotoxic activity against cancer cell lines with IC90 values from 2.8- to 7.4-fold lower than that of the wild-type enzyme.


Subject(s)
Asparaginase , Bacterial Proteins , Thermococcus , Thermococcus/enzymology , Asparaginase/chemistry , Asparaginase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Mutation , Enzyme Stability/genetics , Binding Sites , Protein Conformation , Substrate Specificity/genetics
16.
PLoS One ; 18(6): e0285948, 2023.
Article in English | MEDLINE | ID: mdl-37319282

ABSTRACT

L-asparaginase (ASNase) is a protein that is essential for the treatment of acute lymphoblastic leukemia (ALL). The main types of ASNase that are clinically used involve native and pegylated Escherichia coli (E. coli)-derived ASNase as well as Erwinia chrysanthemi-derived ASNase. Additionally, a new recombinant E. coli-derived ASNase formulation has received EMA market approval in 2016. In recent years, pegylated ASNase has been preferentially used in high-income countries, which decreased the demand for non-pegylated ASNase. Nevertheless, due to the high cost of pegylated ASNase, non-pegylated ASNase is still widely used in ALL treatment in low- and middle-income countries. As a consequence, the production of ASNase products from low- and middle-income countries increased in order to satisfy the demand worldwide. However, concerns over the quality and efficacy of these products were raised due to less stringent regulatory requirements. In the present study, we compared a recombinant E. coli-derived ASNase marketed in Europe (Spectrila®) with an E. coli-derived ASNase preparation from India (Onconase) marketed in Eastern European countries. To assess the quality attributes of both ASNases, an in-depth characterization was conducted. Enzymatic activity testing revealed a nominal enzymatic activity of almost 100% for Spectrila®, whereas the enzymatic activity for Onconase was only 70%. Spectrila® also showed excellent purity as analyzed by reversed-phase high-pressure liquid chromatography, size exclusion chromatography and capillary zone electrophoresis. Furthermore, levels of process-related impurities were very low for Spectrila®. In comparison, the E. coli DNA content in the Onconase samples was almost 12-fold higher and the content of host cell protein was more than 300-fold higher in the Onconase samples. Our results reveal that Spectrila® met all of the testing parameters, stood out for its excellent quality and, thus, represents a safe treatment option in ALL. These findings are particularly important for low- and middle-income countries, where access to ASNase formulations is limited.


Subject(s)
Antineoplastic Agents , Dickeya chrysanthemi , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/genetics , Asparaginase/chemistry , Escherichia coli/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Dickeya chrysanthemi/genetics , Chromatography, Gel , Antineoplastic Agents/therapeutic use
17.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108713

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Asparaginase/genetics , Asparaginase/therapeutic use , Escherichia coli/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Asparagine , Recombinant Fusion Proteins/therapeutic use , Antineoplastic Agents/therapeutic use
18.
Braz J Microbiol ; 54(3): 1645-1654, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37036659

ABSTRACT

Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.


Subject(s)
Asparaginase , Streptomyces , Asparaginase/genetics , Asparaginase/metabolism , Acrylamide/chemistry , Acrylamide/metabolism , Streptomyces/metabolism , Temperature
19.
Biochem Pharmacol ; 210: 115473, 2023 04.
Article in English | MEDLINE | ID: mdl-36863616

ABSTRACT

L-Asparaginase (L-ASNase), a bacterial enzyme that degrades asparagine, has been commonly used in combination with several chemical drugs to treat malignant hematopoietic cancers such as acute lymphoblastic leukemia (ALL). In contrast, the enzyme was known to inhibit the growth of solid tumor cells in vitro, but not to be effective in vivo. We previously reported that two novel monobodies (CRT3 and CRT4) bound specifically with calreticulin (CRT) exposed on tumor cells and tissues during immunogenic cell death (ICD). Here, we engineered L-ASNases conjugated with monobodies at the N-termini and PAS200 tags at the C-termini (CRT3LP and CRT4LP). These proteins were expected to possess four monobody and PAS200 tag moieties, which did not disrupt the L-ASNase conformation. These proteins were expressed 3.8-fold more highly in E. coli than those without PASylation. The purified proteins were highly soluble, with much greater apparent molecular weights than expected ones. Their affinity (Kd) against CRT was about 2 nM, 4-fold higher than that of monobodies. Their enzyme activity (∼6.5 IU/nmol) was similar to that of L-ASNase (∼7.2 IU/nmol), and their thermal stability was significantly increased at 55 °C. Their half-life times were > 9 h in mouse sera, about 5-fold longer than that of L-ASNase (∼1.8 h). Moreover, CRT3LP and CRT4LP bound specifically with CRT exposed on tumor cells in vitro, and additively suppressed the tumor growth in CT-26 and MC-38 tumor-bearing mice treated with ICD-inducing drugs (doxorubicin and mitoxantrone) but not with a non-ICD-inducing drug (gemcitabine). All data indicated that PASylated CRT-targeted L-ASNases enhanced the anticancer efficacy of ICD-inducing chemotherapy. Taken together, L-ASNase would be a potential anticancer drug for treating solid tumors.


Subject(s)
Asparaginase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Asparaginase/genetics , Asparaginase/pharmacology , Asparaginase/therapeutic use , Escherichia coli/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Calreticulin/therapeutic use , Immunogenic Cell Death , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
20.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 1096-1106, 2023 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-36994574

ABSTRACT

L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.


Subject(s)
Bacillus licheniformis , Bacillus , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Asparaginase/genetics , Bacillus/genetics , Protein Sorting Signals , Promoter Regions, Genetic/genetics , Bacillus subtilis/genetics , Bacterial Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...