Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Ther ; 29(3): 989-1000, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33186692

ABSTRACT

Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga-/- mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga-/- mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.


Subject(s)
Aspartylglucosaminuria/therapy , Aspartylglucosylaminase/physiology , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy/methods , Purkinje Cells/metabolism , Animals , Aspartylglucosaminuria/enzymology , Aspartylglucosaminuria/genetics , Aspartylglucosaminuria/pathology , Body Weight , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
AJNR Am J Neuroradiol ; 40(11): 1850-1854, 2019 11.
Article in English | MEDLINE | ID: mdl-31649158

ABSTRACT

BACKGROUND AND PURPOSE: Aspartylglucosaminuria is a rare lysosomal storage disorder that causes slowly progressive, childhood-onset intellectual disability and motor deterioration. Previous studies have shown, for example, hypointensity in the thalami in patients with aspartylglucosaminuria on T2WI, especially in the pulvinar nuclei. Susceptibility-weighted imaging is a neuroimaging technique that uses tissue magnetic susceptibility to generate contrast and is able to visualize iron and other mineral deposits in the brain. SWI findings in aspartylglucosaminuria have not been reported previously. MATERIALS AND METHODS: Twenty-one patients with aspartylglucosaminuria (10 girls; 7.4-15.0 years of age) underwent 3T MR imaging. The protocol included an SWI sequence, and the images were visually evaluated. Thirteen patients (6 girls, 7.4-15.0 years of age) had good-quality SWI. Eight patients had motion artifacts and were excluded from the visual analysis. Thirteen healthy children (8 girls, 7.3-14.1 years of age) were imaged as controls. RESULTS: We found a considerably uniform distribution of decreased signal intensity in SWI in the thalamic nuclei in 13 patients with aspartylglucosaminuria. The most evident hypointensity was found in the pulvinar nuclei. Patchy hypointensities were also found especially in the medial and anterior thalamic nuclei. Moreover, some hypointensity was noted in globi pallidi and substantia nigra in older patients. The filtered-phase images indicated accumulation of paramagnetic compounds in these areas. No abnormal findings were seen in the SWI of the healthy controls. CONCLUSIONS: SWI indicates accumulation of paramagnetic compounds in the thalamic nuclei in patients with aspartylglucosaminuria. The finding may raise the suspicion of this rare disease in clinical practice.


Subject(s)
Aspartylglucosaminuria/diagnostic imaging , Aspartylglucosaminuria/pathology , Brain/diagnostic imaging , Brain/pathology , Neuroimaging/methods , Adolescent , Child , Female , Humans , Magnetic Resonance Imaging/methods , Male
3.
Neuroradiol J ; 29(5): 310-3, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27549151

ABSTRACT

Aspartylglucosaminuria is a rare lysosomal storage disorder that occurs as a result of a deficiency of the aspartylglucosaminidase enzyme. Because the disease is commonly referred to as the Finnish disease heritage, it is underdiagnosed outside of Finland. To date, only three Turkish patients are described in the literature. Here we describe the clinical and brain magnetic resonance imaging findings in two Turkish cousins with aspartylglucosaminuria, which can raise the suspicion of this rare disease in clinical practice.


Subject(s)
Aspartylglucosaminuria/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Aspartylglucosaminuria/pathology , Child , Child, Preschool , Family Health , Humans , Image Processing, Computer-Assisted , Male , Turkey
4.
J Neuroradiol ; 42(6): 345-57, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26026191

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to identify characteristic 3.0 T brain MRI findings in patients with aspartylglucosaminuria (AGU), a rare lysosomal storage disorder. Previous AGU patient material imaged at 1.0 and 1.5 T was also re-evaluated. MATERIALS AND METHODS: Twenty-five brain MRI examinations from 20 AGU patients were included in the study. Thirteen patients underwent a prospective 3.0 T MRI (5 male, 8 female, aged 9-45 years). Twelve examinations from nine patients (4 male, 5 female, aged 8-33 years) previously imaged at 1.0 or 1.5 T were re-evaluated. Two patients were included in both the prospective and the retrospective groups. Visual analysis of the T1- and T2-weighted images was performed by two radiologists. RESULTS: The previously reported signal intensity changes in T2-weighted images were visible at all field strengths, but they were more distinct at 3.0 T than at 1.0 or 1.5 T. These included signal intensity decrease in the thalami and especially in the pulvinar nuclei, periventricular signal intensity increase and juxtacortical high signal foci. Poor differentiation between gray and white matter was found in all patients. Some degree of cerebral and/or cerebellar atrophy and mild ventricular dilatation were found in nearly all patients. This study also disclosed various unspecific findings, including a higher than normal incidence of dilated perivascular spaces, arachnoid cysts, pineal cysts and mildly dilated cavum veli interpositi. CONCLUSION: This study revealed particular brain MRI findings in AGU, which can raise the suspicion of this rare disease in clinical practice.


Subject(s)
Aspartylglucosaminuria/pathology , Brain/pathology , Magnetic Resonance Imaging , Adolescent , Adult , Aspartylglucosaminuria/diagnostic imaging , Brain/diagnostic imaging , Child , Female , Humans , Male , Middle Aged , Pulvinar/diagnostic imaging , Pulvinar/pathology , Retrospective Studies , Thalamus/diagnostic imaging , Thalamus/pathology , Young Adult
5.
Zhonghua Er Ke Za Zhi ; 52(6): 455-9, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25190167

ABSTRACT

OBJECTIVE: The authors sought to investigate the clinical features and characteristics of genetic mutation in patients with aspartylglucosaminuria. METHOD: Clinical data of two pediatric siblings in a family were analyzed retrospectively and relative literature was reviewed in order to study the clinical features, imaging and enzymatic characteristics and genetic mutations. RESULT: Case 1, the proband, male, he was hospitalized at 20 months of age because of fever and hepatosplenomegaly for nine days. This child was of moderate nutritional status and normal development. Blood tests showed hemoglobin 78.0 g/L, RBC3.18 × 10¹²/L, WBC 4.06 × 109/L, neutrophils 0.236, lymphocytes 0.631, platelets 34 × 109/L, C-reactive protein 17 mg/L. Blood biochemistry showed alanine aminotransferase 67.1 U/L, aspartate aminotransferase 74.1 U/L, serum albumin 32.8 g/L, direct bilirubin 10.5 µmol/L, lactate dehydrogenase 301.7 U/L. Bone marrow cytology showed reactive morphological changes in bone marrow cells. Atypical lymphocytes could be seen in both peripheral blood and bone marrow smears. Cranial MRI showed poor myelination. Aspartylglucosaminidase activity in peripheral leucocytes of the proband 5.7 nmol/(g × min) vs. normal control>26.6 nmol/(g × min). On his AGA gene and that of his parents, a heterozygous mutation site located in exon 3, c.392C>T (p.S131L), was identified as a novel mutation inherited from his father. The mutation from his mother has not been detected. The proband was not responsive to the anti-infectious medication, nutritional intervention and symptomatic treatment.He died one month after diagnosis.His elder brother, Case 2, showed fever, recurrent respiratory tract infection and progressive psychomotor regression with hepatosplenomegaly from the age of four years. Cranial MRI revealed extensive symmetrical leukodystrophy in bilateral cerebra, cerebellum and brainstem.He died at the age of six years.Related literature was summarized, and no Chinese AGU cases had been reported; 221 foreign cases were collected. The clinical and imaging characteristics were summarized. Delay in language development was one of the clinical symptoms that the majority of parents of AGU children first noted. CONCLUSION: Patients with aspartylglucosaminuria lack of specific symptoms.For children with unexplained delayed speech and progressive mental retardation, the possibility of AGU should be considered, and efforts be made for enzymatic and genetic diagnosis. c.392C> T (p.S131L) was identified as a novel mutation of AGA gene.


Subject(s)
Aspartylglucosaminuria/diagnosis , Aspartylglucosaminuria/genetics , Aspartylglucosylaminase/genetics , Mutation , Aspartylglucosaminuria/pathology , Aspartylglucosylaminase/metabolism , Biomarkers/blood , Brain/pathology , Child, Preschool , DNA Mutational Analysis , Heterozygote , Humans , Infant , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Magnetic Resonance Imaging , Male , Pedigree , Polymerase Chain Reaction
6.
J Inherit Metab Dis ; 33(5): 611-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20607610

ABSTRACT

Aspartylglycosaminuria (AGU) is a lysosomal storage disease caused by deficient activity of glycosylasparaginase (AGA), and characterized by motor and mental retardation. Enzyme replacement therapy (ERT) in adult AGU mice with AGA removes the accumulating substance aspartylglucosamine from and reverses pathology in many somatic tissues, but has only limited efficacy in the brain tissue of the animals. In the current work, ERT of AGU mice was initiated at the age of 1 week with three different dosage schedules of recombinant glycosylasparaginase. The animals received either 3.4 U of AGA/kg every second day for 2 weeks (Group 1), 1.7 U/kg every second day for 9 days followed by an enzyme injection once a week for 4 weeks (Group 2) or 17 U/kg at the age of 7 and 9 days (Group 3). In the Group 1 and Group 3 mice, ERT reduced the amount of aspartylglucosamine by 34 and 41% in the brain tissue, respectively. No therapeutic effect was observed in the brain tissue of Group 2 mice. As in the case of adult AGU mice, the AGA therapy was much more effective in the somatic tissues than in the brain tissue of the newborn AGU mice. The combined evidence demonstrates that a high dose ERT with AGA in newborn AGU mice is up to twofold more effective in reducing the amount of the accumulated storage material from the brain tissue than ERT in adult AGU animals, indicating the importance of early detection and treatment of the disease.


Subject(s)
Aspartylglucosaminuria/therapy , Aspartylglucosylaminase/administration & dosage , Brain/drug effects , Enzyme Replacement Therapy , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/urine , Age Factors , Animals , Animals, Newborn , Aspartylglucosaminuria/enzymology , Aspartylglucosaminuria/genetics , Aspartylglucosaminuria/pathology , Aspartylglucosylaminase/genetics , Biomarkers/urine , Brain/enzymology , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Humans , Injections, Intraperitoneal , Injections, Intravenous , Mice , Mice, Knockout , NIH 3T3 Cells , Recombinant Proteins/administration & dosage , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...